
9 781292 025940

ISBN 978-1-29202-594-0

Agile Software Development,
Principles, Patterns, and Practices

Robert C. Martin
First Edition

Agile Softw
are Developm

ent M
artin First Edition

www.EBooksWorld.ir

Agile Software Development,
Principles, Patterns, and Practices

Robert C. Martin
First Edition

www.EBooksWorld.ir

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoned.co.uk

© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the
prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affi liation with or endorsement of this
book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

 Printed in the United States of America

ISBN 10: 1-292-02594-8
ISBN 13: 978-1-292-02594-0

ISBN 10: 1-292-02594-8
ISBN 13: 978-1-292-02594-0

www.EBooksWorld.ir

Table of Contents

P E A R S O N C U S T O M L I B R A R Y

I

Section 1. Agile Development

1

1Robert C. Martin

Chapter 1. Agile Practices

3

3Robert C. Martin

Chapter 2. Overview of Extreme Programming

11

11Robert C. Martin

Chapter 3. Planning

19

19Robert C. Martin

Chapter 4. Testing

23

23Robert C. Martin

Chapter 5. Refactoring

31

31Robert C. Martin

Chapter 6. A Programming Episode

43

43Robert C. Martin

Section 2. Agile Design

85

85Robert C. Martin

Chapter 7. What Is Agile Design?

87

87Robert C. Martin

Chapter 8. SRP: The Single-Responsibility Principle

95

95Robert C. Martin

Chapter 9. OCP: The Open-Closed Principle

99

99Robert C. Martin

Chapter 10. LSP: The Liskov Substitution Principle

111

111Robert C. Martin

Chapter 11. DIP: The Dependency-Inversion Principle

127

127Robert C. Martin

www.EBooksWorld.ir

II

Chapter 12. ISP: The Interface-Segregation Principle

135

135Robert C. Martin

Section 3. The Payroll Case Study

147

147Robert C. Martin

Chapter 13. Command and Active Object

151

151Robert C. Martin

Chapter 14. Template Method & Strategy: Inheritance vs. Delegation

161

161Robert C. Martin

Chapter 15. Facade and Mediator

173

173Robert C. Martin

Chapter 16. Singleton and Monostate

177

177Robert C. Martin

Chapter 17. Null Object

189

189Robert C. Martin

Chapter 18. The Payroll Case Study: Iteration One Begins

193

193Robert C. Martin

Chapter 19. The Payroll Case Study: Implementation

205

205Robert C. Martin

Section 4. Packaging the Payroll System

251

251Robert C. Martin

Chapter 20. Principles of Package Design

253

253Robert C. Martin

Chapter 21. Factory

269

269Robert C. Martin

Chapter 22. The Payroll Case Study (Part 2)

275

275Robert C. Martin

Section 5. The Weather Station Case Study

291

291Robert C. Martin

Chapter 23. Composite

293

293Robert C. Martin

Chapter 24. Observer—Backing into a Pattern

297

297Robert C. Martin

Chapter 25. Abstract Server, Adapter, and Bridge

317

317Robert C. Martin

Chapter 26. Proxy and Stairway to Heaven: Managing Third Party APIs

327

327Robert C. Martin

Chapter 27. Case Study: Weather Station

355

355Robert C. Martin

www.EBooksWorld.ir

III

Section 6. The ETS Case Study

385

385Robert C. Martin

Chapter 28. Visitor

387

387Robert C. Martin

Chapter 29. State

419

419Robert C. Martin

Chapter 30. The ETS Framework

443

443Robert C. Martin

Appendix A: UML Notation I: The CGI Example

467

467Robert C. Martin

Appendix B: UML Notation II: The Statmux

489

489Robert C. Martin

Appendix C: A Satire of Two Companies

507

507Robert C. Martin

517

517Index

www.EBooksWorld.ir

IV
www.EBooksWorld.ir

SECTION 1

Agile Development

“Human Interactions are complicated and never very crisp and clean in their effects, but they
matter more than any other aspect of the work.”

—Tom DeMarco and Timothy Lister
Peopleware, p. 5

Principles, patterns, and practices are important, but it’s the people that make them work. As Alistair Cockburn
says,1 “Process and technology are a second-order effect on the outcome of a project. The first-order effect is the
people.”

We cannot manage teams of programmers as if they were systems made up of components driven by a pro-
cess. People are not “plug-compatible programming units.”2 If our projects are to succeed, we are going to have to
build collaborative and self-organizing teams.

Those companies that encourage the formation of such teams will have a huge competitive advantage over
those who hold the view that a software-development organization is nothing more than a pile of twisty little peo-
ple all alike. A gelled software team is the most powerful software-development force there is.

1. Private communication.

2. A term coined by Kent Beck.

From Section 1 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

1
www.EBooksWorld.ir

2
www.EBooksWorld.ir

1

Agile Practices

The weather-cock on the church spire, though made of iron, would soon be broken
by the storm-wind if it did not understand the noble art of turning to every wind.

—Heinrich Heine

Many of us have lived through the nightmare of a project with no practices to guide it. The lack of effective prac-
tices leads to unpredictability, repeated error, and wasted effort. Customers are disappointed by slipping schedules,
growing budgets, and poor quality. Developers are disheartened by working ever longer hours to produce ever
poorer software.

Once we have experienced such a fiasco, we become afraid of repeating the experience. Our fears motivate
us to create a process that constrains our activities and demands certain outputs and artifacts. We draw these con-
straints and outputs from past experience, choosing things that appeared to work well in previous projects. Our
hope is that they will work again and take away our fears.

However, projects are not so simple that a few constraints and artifacts can reliably prevent error. As errors
continue to be made, we diagnose those errors and put in place even more constraints and artifacts in order to pre-
vent those errors in the future. After many, projects we may find ourselves overloaded with a huge cumbersome
process that greatly impedes our ability to get anything done.

A big cumbersome process can create the very problems that it is designed to prevent. It can slow the team to
the extent that schedules slip and budgets bloat. It can reduce responsiveness of the team to the point where they

From Chapter 1 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

3
www.EBooksWorld.ir

Chapter 1 • Agile Practices

are always creating the wrong product. Unfortunately, this leads many teams to believe that they don’t have
enough process. So, in a kind of runaway-process inflation, they make their process ever larger.

Runaway-process inflation is a good description of the state of affairs in many software companies circa
2000 A.D. Though there were still many teams operating without a process, the adoption of very large, heavy-
weight processes is rapidly growing, especially in large corporations. (See Appendix C.)

The Agile Alliance
In early 2001, motivated by the observation that software teams in many corporations were stuck in a quagmire of
ever-increasing process, a group of industry experts met to outline the values and principles that would allow soft-
ware teams to work quickly and respond to change. They called themselves the Agile Alliance.1 Over the next sev-
eral months, they worked to create a statement of values. The result was The Manifesto of the Agile Alliance.

The Manifesto of the Agile Alliance

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck Mike Beedle Arie van Bennekum Alistair Cockburn
Ward Cunningham Martin Fowler James Grenning Jim Highsmith
Andrew Hunt Ron Jeffries Jon Kern Brian Marick
Robert C. Martin Steve Mellor Ken Schwaber Jeff Sutherland
Dave Thomas

Individuals and interactions over processes and tools. People are the most important ingredient of suc-
cess. A good process will not save the project from failure if the team doesn’t have strong players, but a bad pro-
cess can make even the strongest of players ineffective. Even a group of strong players can fail badly if they don’t
work as a team.

A strong player is not necessarily an ace programmer. A strong player may be an average programmer, but
someone who works well with others. Working well with others, communicating and interacting, is more impor-
tant than raw programming talent. A team of average programmers who communicate well are more likely to suc-
ceed than a group of superstars who fail to interact as a team.

The right tools can be very important to success. Compilers, IDEs, source-code control systems, etc. are all
vital to the proper functioning of a team of developers. However, tools can be overemphasized. An overabundance
of big, unwieldy tools is just as bad as a lack of tools.

My advice is to start small. Don’t assume you’ve outgrown a tool until you’ve tried it and found you can’t
use it. Instead of buying the top-of-the-line, megaexpensive, source-code control system, find a free one and use it

1. agilealliance.org

4
www.EBooksWorld.ir

The Agile Alliance

until you can demonstrate that you’ve outgrown it. Before you buy team licenses for the best of all CASE tools,
use white boards and graph paper until you can reasonably show that you need more. Before you commit to the
top-shelf behemoth database system, try flat files. Don’t assume that bigger and better tools will automatically help
you do better. Often they hinder more than they help.

Remember, building the team is more important than building the environment. Many teams and managers
make the mistake of building the environment first and expecting the team to gel automatically. Instead, work to
create the team, and then let the team configure the environment on the basis of need.

Working software over comprehensive documentation. Software without documentation is a disaster.
Code is not the ideal medium for communicating the rationale and structure of a system. Rather, the team needs to
produce human-readable documents that describe the system and the rationale for their design decisions.

However, too much documentation is worse than too little. Huge software documents take a great deal of
time to produce and even more time to keep in sync with the code. If they are not kept in sync, then they turn into
large, complicated lies and become a significant source of misdirection.

It is always a good idea for the team to write and maintain a rationale and structure document, but that docu-
ment needs to be short and salient. By “short,” I mean one or two dozen pages at most. By “salient,” I mean it
should discuss the overall design rationale and only the highest-level structures in the system.

If all we have is a short rationale and structure document, how do we train new team members to work on the
system? We work closely with them. We transfer our knowledge to them by sitting next to them and helping them.
We make them part of the team through close training and interaction.

The two documents that are the best at transferring information to new team members are the code and the
team. The code does not lie about what it does. It may be hard to extract rationale and intent from the code, but
the code is the only unambiguous source of information. The team members hold the ever-changing road map of
the system in their heads. There is no faster and more efficient way to transfer that road map to others than human-
to-human interaction.

Many teams have gotten hung up in the pursuit of documentation instead of software. This is often a fatal
flaw. There is a simple rule called Martin’s first law of documentation that prevents it:

Produce no document unless its need is immediate and significant.

Customer collaboration over contract negotiation. Software cannot be ordered like a commodity. You
cannot write a description of the software you want and then have someone develop it on a fixed schedule for a
fixed price. Time and time again, attempts to treat software projects in this manner have failed. Sometimes the fail-
ures are spectacular.

It is tempting for the managers of a company to tell their development staff what their needs are, and then
expect that staff to go away for a while and return with a system that satisfies those needs. However, this mode of
operation leads to poor quality and failure.

Successful projects involve customer feedback on a regular and frequent basis. Rather than depending on a
contract or a statement of work, the customer of the software works closely with the development team, providing
frequent feedback on their efforts.

A contract that specifies the requirements, schedule, and cost of a project is fundamentally flawed. In most
cases, the terms it specifies become meaningless long before the project is complete.2 The best contracts are those
that govern the way the development team and the customer will work together.

As an example of a successful contract, take one I negotiated in 1994 for a large, multiyear, half-million-line
project. We, the development team, were paid a relatively low monthly rate. Large payouts were made to us when
we delivered certain large blocks of functionality. Those blocks were not specified in detail by the contract. Rather,

2. Sometimes long before the contract is signed!

5
www.EBooksWorld.ir

Chapter 1 • Agile Practices

the contract stated that the payout would be made for a block when the block passed the customer’s acceptance
test. The details of those acceptance tests were not specified in the contract.

During the course of this project, we worked very closely with the customer. We released the software to him
almost every Friday. By Monday or Tuesday of the following week, he would have a list of changes for us to put
into the software. We would prioritize those changes together and then schedule them into subsequent weeks. The
customer worked so closely with us that acceptance tests were never an issue. He knew when a block of function-
ality satisfied his needs because he watched it evolve from week to week.

The requirements for this project were in a constant state of flux. Major changes were not uncommon. There
were whole blocks of functionality that were removed and others that were inserted. Yet the contract, and the
project, survived and succeeded. The key to this success was the intense collaboration with the customer and a
contract that governed that collaboration rather than trying to specify the details of scope and schedule for a
fixed cost.

Responding to change over following a plan. It is the ability to respond to change that often determines
the success or failure of a software project. When we build plans, we need to make sure that our plans are flexible
and ready to adapt to changes in the business and technology.

The course of a software project cannot be planned very far into the future. First of all, the business environ-
ment is likely to change, causing the requirements to shift. Second, customers are likely to alter the requirements
once they see the system start to function. Finally, even if we know the requirements, and we are sure they won’t
change, we are not very good at estimating how long it will take to develop them.

It is tempting for novice managers to create a nice PERT or Gantt chart of the whole project and tape it to the
wall. They may feel that this chart gives them control over the project. They can track the individual tasks and
cross them off the chart as they are completed. They can compare the actual dates with the planned dates on the
chart and react to any discrepancies.

What really happens is that the structure of the chart degrades. As the team gains knowledge about the sys-
tem, and as the customers gain knowledge about their needs, certain tasks on the chart become unnecessary. Other
tasks will be discovered and will need to be added. In short, the plan will undergo changes in shape, not just
changes in dates.

A better planning strategy is to make detailed plans for the next two weeks, very rough plans for the next
three months, and extremely crude plans beyond that. We should know the tasks we will be working on for the next
two weeks. We should roughly know the requirements we will be working on for the next three months. And we
should have only a vague idea what the system will do after a year.

This decreasing resolution of the plan means that we are only investing in a detailed plan for those tasks that
are immediate. Once the detailed plan is made, it is hard to change since the team will have a lot of momentum and
commitment. However, since that plan only governs a few weeks’ worth of time, the rest of the plan remains
flexible.

Principles
The above values inspired the following 12 principles, which are the characteristics that differentiate a set of agile
practices from a heavyweight process:

• Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
The MIT Sloan Management Review published an analysis of software development practices that help

companies build high-quality products.3 The article found a number of practices that had a significant impact
on the quality of the final system. One practice was a strong correlation between quality and the early deliv-

3. Product-Development Practices That Work: How Internet Companies Build Software, MIT Sloan Management Review, Winter 2001,
Reprint number 4226.

6
www.EBooksWorld.ir

Principles

ery of a partially functioning system. The article reported that the less functional the initial delivery, the
higher the quality in the final delivery.

Another finding of this article is a strong correlation between final quality and frequent deliveries of
increasing functionality. The more frequent the deliveries, the higher the final quality.

An agile set of practices delivers early and often. We strive to deliver a rudimentary system within the
first few weeks of the start of the project. Then, we strive to continue to deliver systems of increasing func-
tionality every two weeks.

Customers may choose to put these systems into production if they think that they are functional
enough. Or they may choose simply to review the existing functionality and report on changes they want
made.

• Welcome changing requirements, even late in development. Agile processes harness change for the cus-
tomer's competitive advantage.

This is a statement of attitude. The participants in an agile process are not afraid of change. They view
changes to the requirements as good things, because those changes mean that the team has learned more
about what it will take to satisfy the market.

An agile team works very hard to keep the structure of its software flexible so that when requirements
change, the impact to the system is minimal. Later in this book we will learn the principles and patterns of
object-oriented design that help us to maintain this kind of flexibility.

• Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the
shorter time scale.

We deliver working software, and we delivery it early (after the first few weeks) and often (every few
weeks thereafter). We are not content with delivering bundles of documents or plans. We don’t count those
as true deliveries. Our eye is on the goal of delivering software that satisfies the customer’s needs.

• Business people and developers must work together daily throughout the project.
In order for a project to be agile, there must be significant and frequent interaction between the cus-

tomers, developers, and stakeholders. A software project is not like a fire-and-forget weapon. A software
project must be continuously guided.

• Build projects around motivated individuals. Give them the environment and support they need, and trust
them to get the job done.

An agile project is one in which people are considered the most important factor of success. All other
factors—process, environment, management, etc.—are considered to be second order effects, and they are
subject to change if they are having an adverse effect upon the people.

For example, if the office environment is an obstacle to the team, the office environment must be
changed. If certain process steps are an obstacle to the team, the process steps must be changed.

• The most efficient and effective method of conveying information to and within a development team is face-
to-face conversation.

In an agile project, people talk to each other. The primary mode of communication is conversation.
Documents may be created, but there is no attempt to capture all project information in writing. An agile
project team does not demand written specs, written plans, or written designs. Team members may create
them if they perceive an immediate and significant need, but they are not the default. The default is
conversation.

• Working software is the primary measure of progress.
Agile projects measure their progress by measuring the amount of software that is currently meeting

the customer’s need. They don’t measure their progress in terms of the phase that they are in or by the vol-
ume of documentation that has been produced or by the amount of infrastructure code they have created.
They are 30% done when 30% of the necessary functionality is working.

7
www.EBooksWorld.ir

Chapter 1 • Agile Practices

• Agile processes promote sustainable development. The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

An agile project is not run like a 50-yard dash; it is run like a marathon. The team does not take off at
full speed and try to maintain that speed for the duration. Rather, they run at a fast, but sustainable, pace.

Running too fast leads to burnout, shortcuts, and debacle. Agile teams pace themselves. They don’t
allow themselves to get too tired. They don’t borrow tomorrow’s energy to get a bit more done today. They
work at a rate that allows them to maintain the highest quality standards for the duration of the project.

• Continuous attention to technical excellence and good design enhances agility.
High quality is the key to high speed. The way to go fast is to keep the software as clean and robust as

possible. Thus, all agile team members are committed to producing only the highest quality code they can.
They do not make messes and then tell themselves they’ll clean it up when they have more time. If they
make a mess, they clean it up before they finish for the day.

• Simplicity—the art of maximizing the amount of work not done—is essential.
Agile teams do not try to build the grand system in the sky. Rather, they always take the simplest path

that is consistent with their goals. They don’t put a lot of importance on anticipating tomorrow’s problems,
nor do they try to defend against all of them today. Instead, they do the simplest and highest-quality work
today, confident that it will be easy to change if and when tomorrow’s problems arise.

• The best architectures, requirements, and designs emerge from self-organizing teams.
An agile team is a self-organizing team. Responsibilities are not handed to individual team members

from the outside. Responsibilities are communicated to the team as a whole, and the team determines the
best way to fulfill them.

Agile team members work together on all aspects of the project. Each is allowed input into the whole.
No single team member is responsible for the architecture or the requirements or the tests. The team shares
those responsibilities, and each team member has influence over them.

• At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior
accordingly.

An agile team continually adjusts its organization, rules, conventions, relationships, etc. An agile team
knows that its environment is continuously changing and knows that they must change with that environ-
ment to remain agile.

Conclusion
The professional goal of every software developer and every development team is to deliver the highest possible
value to their employers and customers. And yet our projects fail, or fail to deliver value, at a dismaying rate.
Though well intentioned, the upward spiral of process inflation is culpable for at least some of this failure. The
principles and values of agile software development were formed as a way to help teams break the cycle of process
inflation and to focus on simple techniques for reaching their goals.

At the time of this writing, there were many agile processes to choose from. These include SCRUM,4

Crystal,5 Feature Driven Development,6 Adaptive Software Development (ADP),7 and most significantly, Extreme
Programming.8

4. www.controlchaos.com

5. crystalmethodologies.org

6. Java Modeling In Color With UML: Enterprise Components and Process, Peter Coad, Eric Lefebvre, and Jeff De Luca, Prentice Hall,
1999.

7. [Highsmith2000].

8. [Beck1999], [Newkirk2001].

8
www.EBooksWorld.ir

Conclusion

Bibliography

1. Beck, Kent. Extreme Programming Explained: Embracing Change. Reading, MA: Addison–Wesley, 1999.
2. Newkirk, James, and Robert C. Martin. Extreme Programming in Practice. Upper Saddle River, NJ: Addison–Wesley, 2001.
3. Highsmith, James A. Adaptive Software Development: A Collaborative Approach to Managing Complex Systems. New York, NY: Dorset

House, 2000.

9
www.EBooksWorld.ir

10
www.EBooksWorld.ir

2

Overview of Extreme Programming

As developers we need to remember that XP is not the only game in town.

—Pete McBreen

The previous chapter gave us an outline of what agile software development is about. However, it didn’t tell us
exactly what to do. It gave us some platitudes and goals, but it gave us little in the way of real direction. This chap-
ter corrects that.

The Practices of Extreme Programming
Extreme programming is the most famous of the agile methods. It is made up of a set of simple, yet interdependent
practices. These practices work together to form a whole that is greater than its parts. We shall briefly consider that
whole in this chapter, and examine some of the parts in chapters to come.

Customer Team Member

We want the customer and developers to work closely with each other so that they are both aware of each other’s
problems and are working together to solve those problems.

From Chapter 2 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

11
www.EBooksWorld.ir

Chapter 2 • Overview of Extreme Programming

Who is the customer? The customer of an XP team is the person or group who defines and prioritizes fea-
tures. Sometimes, the customer is a group of business analysts or marketing specialists working in the same com-
pany as the developers. Sometimes, the customer is a user representative commissioned by the body of users.
Sometimes the customer is in fact the paying customer. But in an XP project, whoever the customers are, they are
members of, and available to, the team.

The best case is for the customer to work in the same room as the developers. Next best is if the customer
works in within 100 feet of the developers. The larger the distance, the harder it is for the customer to be a true
team member. If the customer is in another building or another state, it is very difficult to integrate him or her into
the team.

What do you do if the customer simply cannot be close by? My advice is to find someone who can be close
by and who is willing and able to stand in for the true customer.

User Stories

In order to plan a project, we must know something about the requirements, but we don’t need to know very much.
For planning purposes, we only need to know enough about a requirement to estimate it. You may think that in
order to estimate a requirement you need to know all its details, but that’s not quite true. You have to know that
there are details, and you have to know roughly the kinds of details there are, but you don’t have to know the
specifics.

The specific details of a requirement are likely to change with time, especially once the customer begins to
see the system come together. There is nothing that focuses requirements better than seeing the nascent system
come to life. Therefore, capturing the specific details about a requirement long before it is implemented is likely to
result in wasted effort and premature focusing.

When using XP, we get the sense of the details of the requirements by talking them over with the customer,
but we do not capture that detail. Rather, the customer writes a few words on an index card that we agree will remind
us of the conversation. The developers write an estimate on the card at roughly the same time that the customer
writes it. They base that estimate on the sense of detail they got during their conversations with the customer.

A user story is a mnemonic token of an ongoing conversation about a requirement. It is a planning tool that
the customer uses to schedule the implementation of a requirement based upon its priority and estimated cost.

Short Cycles

An XP project delivers working software every two weeks. Each of these two-week iterations produces working
software that addresses some of the needs of the stakeholders. At the end of each iteration, the system is demon-
strated to the stakeholders in order to get their feedback.

The Iteration Plan. An iteration is usually two weeks in length. It represents a minor delivery that may or
may not be put into production. It is a collection of user stories selected by the customer according to a budget
established by the developers.

The developers set the budget for an iteration by measuring how much they got done in the previous itera-
tion. The customer may select any number of stories for the iteration, so long as the total of their estimates does
not exceed that budget.

Once an iteration has been started, the customer agrees not to change the definition or priority of the stories
in that iteration. During this time, the developers are free to cut the stories up in to tasks and to develop the tasks in
the order that makes the most technical and business sense.

The Release Plan. XP teams often create a release plan that maps out the next six iterations or so. That
plan is known as a release plan. A release is usually three months worth of work. It represents a major delivery that
can usually be put into production. A release plan consists of prioritized collections of user stories that have been
selected by the customer according to a budget given by the developers.

12
www.EBooksWorld.ir

The Practices of Extreme Programming

The developers set the budget for the release by measuring how much they got done in the previous release.
The customer may select any number of stories for the release so long as the total of the estimates does not exceed
that budget. The customer also determines the order in which the stories will be implemented in the release. If the
team so desires, they can map out the first few iterations of the release by showing which stories will be completed
in which iterations.

Releases are not cast in stone. The customer can change the content at any time. He or she can cancel stories,
write new stories, or change the priority of a story.

Acceptance Tests

The details about the user stories are captured in the form of acceptance tests specified by the customer. The accep-
tance tests for a story are written immediately preceding, or even concurrent with, the implementation of that story.
They are written in some kind of scripting language that allows them to be run automatically and repeatedly.
Together, they act to verify that the system is behaving as the customers have specified.

The language of the acceptance tests grows and evolves with the system. The customers may recruit the
developers to create a simple scripting system, or they may have a separate quality assurance (QA) department that
can develop it. Many customers enlist the help of QA in developing the acceptance-testing tool and with writing
the acceptance tests themselves.

Once an acceptance test passes, it is added to the body of passing acceptance tests and is never allowed to
fail again. This growing body of acceptance tests is run several times per day, every time the system is built. If an
acceptance tests fails, the build is declared a failure. Thus, once a requirement is implemented, it is never broken.
The system migrates from one working state to another and is never allowed to be inoperative for longer than a few
hours.

Pair Programming

All production code is written by pairs of programmers working together at the same workstation. One member of
each pair drives the keyboard and types the code. The other member of the pair watches the code being typed,
looking for errors and improvements.1 The two interact intensely. Both are completely engaged in the act of writ-
ing software.

The roles change frequently. The driver may get tired or stuck, and his pair partner will grab the keyboard
and start to drive. The keyboard will move back and forth between them several times in an hour. The resultant
code is designed and authored by both members. Neither can take more than half the credit.

Pair membership changes at least once per day so that every programmer works in two different pairs each
day. Over the course of an iteration, every member of the team should have worked with every other member of the
team, and they should have worked on just about everything that was going on in the iteration.

This dramatically increases the spread of knowledge through the team. While specialties remain and tasks
that require certain specialties will usually belong to the appropriate specialists, those specialists will pair with
nearly everyone else on the team. This will spread the specialty out through the team such that other team mem-
bers can fill in for the specialists in a pinch.

Studies by Laurie Williams2 and Nosek3 have suggested that pairing does not reduce the efficiency of the
programming staff, yet it significantly reduces the defect rate.

1. I have seen pairs in which one member controls the keyboard and the other controls the mouse.

2. [Williams2000], [Cockburn2001].

3. [Nosek].

13
www.EBooksWorld.ir

Chapter 2 • Overview of Extreme Programming

Test-Driven Development

Chapter 4, which is on testing, discusses test-driven development in great detail. The following paragraphs provide
a quick overview.

All production code is written in order to make failing unit tests pass. First we write a unit test that fails
because the functionality for which it is testing doesn’t exist. Then we write the code that makes that test pass.

This iteration between writing test cases and code is very rapid, on the order of a minute or so. The test cases
and code evolve together, with the test cases leading the code by a very small fraction. (See “A Programming Epi-
sode” in Chapter 6 for an example.)

As a result, a very complete body of test cases grows along with the code. These tests allow the programmers
to check whether the program works. If a pair makes a small change, they can run the tests to ensure that they
haven’t broken anything. This greatly facilitates refactoring (discussed later).

When you write code in order to make test cases pass, that code is, by definition, testable. In addition, there
is a strong motivation to decouple modules from each other so that they can be independently tested. Thus, the
design of code that is written in this fashion tends to be much less coupled. The principles of object-oriented
design play a powerful role in helping you with this decoupling.4

Collective Ownership

A pair has the right to check out any module and improve it. No programmers are individually responsible for any
one particular module or technology. Everybody works on the GUI.5 Everybody works on the middleware. Every-
body works on the database. Nobody has more authority over a module or a technology than anybody else.

This doesn’t mean that XP denies specialties. If your specialty is the GUI, you are most likely to work on
GUI tasks, but you will also be asked to pair on middleware and database tasks. If you decide to learn a second
specialty, you can sign up for tasks and work with specialists who will teach it to you. You are not confined to your
specialty.

Continuous Integration

The programmers check in their code and integrate several times per day. The rule is simple. The first one to check
in wins, everybody else merges.

XP teams use nonblocking source control. This means that programmers are allowed to check any module
out at any time, regardless of who else may have it checked out. When the programmer checks the module back in
after modifying it, he must be prepared to merge it with any changes made by anyone who checked the module in
ahead of him. To avoid long merge sessions, the members of the team check in their modules very frequently.

A pair will work for an hour or two on a task. They create test cases and production code. At some conve-
nient breaking point, probably long before the task is complete, the pair decides to check the code back in. They
first make sure that all the tests run. They integrate their new code into the existing code base. If there is a merge to
do, they do it. If necessary, they consult with the programmers who beat them to the check in. Once their changes
are integrated, they build the new system. They run every test in the system, including all currently running accep-
tance tests. If they broke anything that used to work, they fix it. Once all the tests run, they finish the check in.

Thus, XP teams will build the system many times each day. They build the whole system from end to end.6 If
the final result of a system is a CD, they cut the CD. If the final result of the system is an active Web site, they
install that Web site, probably on a testing server.

4. See Section II.

5. I’m not advocating a three-tiered architecture here. I just chose three common partitions of software technology.

6. Ron Jeffries says, “End to end is farther than you think.”

14
www.EBooksWorld.ir

The Practices of Extreme Programming

Sustainable Pace

A software project is not a sprint; it is a marathon. A team that leaps off the starting line and starts racing as fast as
it can will burn out long before they are close to finishing. In order to finish quickly, the team must run at a sustain-
able pace; it must conserve its energy and alertness. It must intentionally run at a steady, moderate pace.

The XP rule is that a team is not allowed to work overtime. The only exception to that rule is the last week in
a release. If the team is within striking distance of its release goal and can sprint to the finish, then overtime is per-
missible.

Open Workspace

The team works together in an open room. There are tables set up with workstations on them. Each table has two
or three such workstations. There are two chairs in front of each workstation for pairs to sit in. The walls are cov-
ered with status charts, task breakdowns, UML diagrams, etc.

The sound in this room is a low buzz of conversation. Each pair is within earshot of every other. Each has the
opportunity to hear when another is in trouble. Each knows the state of the other. The programmers are in a posi-
tion to communicate intensely.

One might think that this would be a distracting environment. It would be easy to fear that you’d never get
anything done because of the constant noise and distraction. In fact, this doesn’t turn out to be the case. Moreover,
instead of interfering with productivity, a University of Michigan study suggested that working in a “war room”
environment may increase productivity by a factor of two.7

The Planning Game

The next chapter, “Planning,” goes into great detail about the XP
planning game. I’ll describe it briefly here.

The essence of the planning game is the division of responsi-
bility between business and development. The business people (a.k.a.
the customers) decide how important a feature is, and the developers
decide how much that feature will cost to implement.

At the beginning of each release and each iteration, the devel-
opers give the customers a budget, based on how much they were
able to get done in the last iteration or in the last release. The customers choose stories whose costs total up to, but
do not exceed that budget.

With these simple rules in place, and with short iterations and frequent releases, it won’t be long before the
customers and developers get used to the rhythm of the project. The customers will get a sense for how fast the
developers are going. Based on that sense, the customers will be able to determine how long their project will take
and how much it will cost.

Simple Design

An XP team makes their designs as simple and expressive as they can be. Furthermore, they narrow their focus to
consider only the stories that are planned for the current iteration. They don’t worry about stories to come. Instead,
they migrate the design of the system, from iteration to iteration, to be the best design for the stories that the sys-
tem currently implements.

This means that an XP team will probably not start with infrastructure. They probably won’t select the data-
base first. They probably won’t select the middleware first. The team’s first act will be to get the first batch of sto-
ries working in the simplest way possible. The team will only add the infrastructure when a story comes along that
forces them to do so.

7. http://www.sciencedaily.com/releases/2000/12/001206144705.htm

15
www.EBooksWorld.ir

Chapter 2 • Overview of Extreme Programming

The following three XP mantras guide the developer:

Consider the Simplest Thing That Could Possibly Work. XP teams always try to find the simplest pos-
sible design option for the current batch of stories. If we can make the current stories work with flat files, we might
not use a database or EJB. If we can make the current stories work with a simple socket connection, we might not
use an ORB or RMI. If we can make the current stories work without multithreading, we might not include
mutithreading. We try to consider the simplest way to implement the current stories. Then we choose a solution
that is as close to that simplicity as we can practically get.

You Aren’t Going to Need It. Yeah, but we know we’re going to need that database one day. We know
we’re going to need an ORB one day. We know we’re going to have to support multiple users one day. So we need
to put the hooks in for those things now, don’t we?

An XP team seriously considers what will happen if they resist the temptation to add infrastructure before it
is strictly needed. They start from the assumption that they aren’t going to need that infrastructure. The team puts
in the infrastructure, only if they have proof, or at least very compelling evidence, that putting in the infrastructure
now will be more cost effective than waiting.

Once and Only Once. XPers don’t tolerate code duplication. Wherever they find it, they eliminate it.
There are many sources of code duplication. The most obvious are those stretches of code that were captured

with a mouse and plopped down in multiple places. When we find those, we eliminate them by creating a function
or a base class. Sometimes two or more algorithms may be remarkably similar, and yet they differ in subtle ways.
We turn those into functions or employ the TEMPLATE METHOD pattern.8 Whatever the source of duplication, once
discovered, we won’t tolerate it.

The best way to eliminate redundancy is to create abstractions. After all, if two things are similar, there must
be some abstraction that unifies them. Thus, the act of eliminating redundancy forces the team to create many
abstractions and further reduce coupling.

Refactoring9

I cover this topic in more detail in Chapter 5. What follows is a brief overview.
Code tends to rot. As we add feature after feature and deal with bug after bug, the structure of the code

degrades. Left unchecked, this degradation leads to a tangled, unmaintainable mess.
XP teams reverse this degradation through frequent refactoring. Refactoring is the practice of making a

series of tiny transformations that improve the structure of the system without affecting its behavior. Each transfor-
mation is trivial, hardly worth doing. But together, they combine into significant transformations of the design and
architecture of the system.

After each tiny transformation, we run the unit tests to make sure we haven’t broken anything. Then we do
the next transformation and the next and the next, running the tests after each. In this manner we keep the system
working while transforming its design.

Refactoring is done continuously rather than at the end of the project, the end of the release, the end of the
iteration, or even the end of the day. Refactoring is something we do every hour or every half hour. Through refac-
toring, we continuously keep the code as clean, simple, and expressive as possible.

Metaphor

Metaphor is the least understood of all the practices of XP. XPers are pragmatists at heart, and this lack of concrete
definition makes us uncomfortable. Indeed, the proponents of XP have often discussed removing metaphor as a
practice. And yet, in some sense, metaphor is one of the most important practices of all.

8. See Chapter 14, “Template Method & Strategy: Inheritance v. Delegation.”

9. [Fowler99].

16
www.EBooksWorld.ir

Conclusion

Think of a jigsaw puzzle. How do you know how the pieces go together? Clearly, each piece abuts others,
and its shape must be perfectly complimentary to the pieces it touches. If you were blind and you had a very good
sense of touch, you could put the puzzle together by diligently sifting through each piece and trying it in position
after position.

But there is something more powerful than the shape of the pieces binding the puzzle together. There is a
picture. The picture is the true guide. The picture is so powerful that if two adjacent pieces of the picture do not
have complementary shapes, then you know that the puzzle maker made a mistake.

That is the metaphor. It’s the big picture that ties the whole system together. It’s the vision of the system that
makes the location and shape of all the individual modules obvious. If a module’s shape is inconsistent with the
metaphor, then you know it is the module that is wrong.

Often a metaphor boils down to a system of names. The names provide a vocabulary for elements in the sys-
tem and help to define their relationships.

For example, I once worked on a system that transmitted text to a screen at 60 characters per second. At that
rate, a screen fill could take some time. So we’d allow the program that was generating the text to fill a buffer.
When the buffer was full, we’d swap the program out to disk. When the buffer got close to empty, we’d swap the
program back in and let it run more.

We spoke about this system in terms of dump trucks hauling garbage. The buffers were little trucks. The dis-
play screen was the dump. The program was the garbage producer. The names all fit together and helped us think
about the system as a whole.

As another example, I once worked on a system that analyzed network traffic. Every thirty minutes, it would
poll dozens of network adapters and pull down the monitoring data from them. Each network adapter gave us a
small block of data composed of several individual variables. We called these blocks “slices.” The slices were raw
data that needed to be analyzed. The analysis program “cooked” the slices, so it was called “The Toaster.” We
called the individual variables within the slices, “crumbs.” All in all, it was a useful and entertaining metaphor.

Conclusion
Extreme programming is a set of simple and concrete practices that combines into an agile development process.
That process has been used on many teams with good results.

XP is a good general-purpose method for developing software. Many project teams will be able to adopt it as
is. Many others will be able to adapt it by adding or modifying practices.

Bibliography

1. Dahl, Dijkstra. Structured Programming. New York: Hoare, Academic Press, 1972.
2. Conner, Daryl R. Leading at the Edge of Chaos. Wiley, 1998.
3. Cockburn, Alistair. The Methodology Space. Humans and Technology technical report HaT TR.97.03 (dated 97.10.03),

http://members.aol.com/acockburn/papers/methyspace/methyspace.htm.
4. Beck, Kent. Extreme Programming Explained: Embracing Change. Reading, MA: Addison–Wesley, 1999.
5. Newkirk, James, and Robert C. Martin. Extreme Programming in Practice. Upper Saddle River, NJ: Addison–Wesley, 2001.
6. Williams, Laurie, Robert R. Kessler, Ward Cunningham, Ron Jeffries. Strengthening the Case for Pair Programming. IEEE Software,

July–Aug. 2000.
7. Cockburn, Alistair, and Laurie Williams. The Costs and Benefits of Pair Programming. XP2000 Conference in Sardinia, reproduced in

Extreme Programming Examined, Giancarlo Succi, Michele Marchesi. Addison–Wesley, 2001.
8. Nosek, J. T. The Case for Collaborative Programming. Communications of the ACM (1998): 105–108.
9. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: Addison–Wesley, 1999.

17
www.EBooksWorld.ir

18
www.EBooksWorld.ir

3

Planning

“When you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in numbers,

your knowledge is of a meager and unsatisfactory kind.”

—Lord Kelvin, 1883

What follows is a description of the planning game from Extreme Programming (XP).1 It is similar to the way
planning is done in several of the other agile2 methods like SCRUM,3 Crystal,4 feature-driven development,5 and
adaptive software development (ADP).6 However, none of those processes spell it out in as much detail and rigor.

1. [Beck99], [Newkirk2001].

2. www.AgileAlliance.org

3. www.controlchaos.com

4. crystalmethodologies.org

5. Java Modeling In Color With UML: Enterprise Components and Process by Peter Coad, Eric Lefebvre, and Jeff De Luca, Prentice
Hall, 1999.

6. [Highsmith2000].

From Chapter 3 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

19
www.EBooksWorld.ir

Chapter 3 • Planning

Initial Exploration
At the start of the project, the developers and customers try to identify all the really significant user stories they
can. However, they don’t try to identify all user stories. As the project proceeds, the customers will continue to
write new user stories. The flow of user stories will not shut off until the project is over.

The developers work together to estimate the stories. The estimates are relative, not absolute. We write a
number of “points” on a story card to represent the relative cost of the story. We may not be sure just how much
time a story point represents, but we do know that a story with eight points will take twice as long as a story with
four points.

Spiking, Splitting, and Velocity

Stories that are too large or too small are hard to estimate. Developers tend to underestimate large stories and over-
estimate small ones. Any story that is too big should be split into pieces that aren’t too big. Any story that is too
small should be merged with other small stories.

For example, consider the story, “Users can securely transfer money into, out of, and between their
accounts.” This is a big story. Estimating will be hard and probably inaccurate. However, we can split it as follow,
into many stories that are much easier to estimate:

• Users can log in.
• Users can log out.
• Users can deposit money into their account.
• Users can withdraw money from their account.
• Users can transfer money from their account to another account.

When a story is split or merged, it should be reestimated. It is not wise to simply add or subtract the estimate.
The main reason to split or merge a story is to get it to a size where estimation is accurate. It is not surprising to
find that a story estimated at five points breaks up into stories that add up to ten! Ten is the more accurate estimate.

Relative estimates don’t tell us the absolute size of the stories, so they don’t help us determine when to split
or merge them. In order to know the true size of a story, we need a factor that we call velocity. If we have an accu-
rate velocity, we can multiply the estimate of any story by the velocity to get the actual time estimate for that story.
For example, if our velocity is “2 days per story point,” and we have a story with a relative estimate of four points,
then the story should take eight days to implement.

As the project proceeds, the measure of velocity will become ever more accurate because we’ll be able to
measure the number of story points completed per iteration. However, the developers will probably not have a very
good idea of their velocity at the start. They must create an initial guess by whatever means they feel will give the
best results. The need for accuracy at this point is not particularly grave, so they don’t need to spend an inordinate
amount of time on it. Often, it is sufficient to spend a few days prototyping a story or two to get an idea of the
team’s velocity. Such a prototype session is called a spike.

Release Planning
Given a velocity, the customers can get an idea of the cost of each of the stories. They also know the business value
and priority of each story. This allows them to choose the stories they want done first. This choice is not purely a
matter of priority. Something that is important, but also expensive, may be delayed in favor of something that is
less important but much less expensive. Choices like this are business decisions. The business folks decide which
stories give them the most bang for the buck.

The developers and customers agree on a date for the first release of the project. This is usually a matter of
2–4 months in the future. The customers pick the stories they want implemented within that release and the rough

20
www.EBooksWorld.ir

Task Planning

order in which they want them implemented. The customers cannot choose more stories than will fit according to
the current velocity. Since the velocity is initially inaccurate, this selection is crude. But accuracy is not very
important at this point in time. The release plan can be adjusted as velocity becomes more accurate.

Iteration Planning
Next, the developers and customers choose an iteration size. This is typically two weeks long. Once again, the cus-
tomers choose the stories that they want implemented in the first iteration. They cannot choose more stories than
will fit according to the current velocity.

The order of the stories within the iteration is a technical decision. The developers implement the stories in
the order that makes the most technical sense. They may work on the stories serially, finishing each one after the
next, or they may divvy up the stories and work on them all concurrently. It’s entirely up to them.

The customers cannot change the stories in the iteration once the iteration has begun. They are free to change
or reorder any other story in the project, but not the ones that the developers are currently working on.

The iteration ends on the specified date, even if all the stories aren’t done. The estimates for all the com-
pleted stories are totaled, and the velocity for that iteration is calculated. This measure of velocity is then used to
plan the next iteration. The rule is very simple. The planned velocity for each iteration is the measured velocity of
the previous iteration. If the team got 31 story points done last iteration, then they should plan to get 31 story
points done in the next. Their velocity is 31 points per iteration.

This feedback of velocity helps to keep the planning in sync with the team. If the team gains in expertise and
skill, the velocity will rise commensurately. If someone is lost from the team, the velocity will fall. If an architec-
ture evolves that facilitates development, the velocity will rise.

Task Planning
At the start of a new iteration, the developers and customers get together to plan. The developers break the stories
down into development tasks. A task is something that one developer can implement in 4–16 hours. The stories are
analyzed, with the customers’ help, and the tasks are enumerated as completely as possible.

A list of the tasks is created on a flip chart, whiteboard, or some other convenient medium. Then, one by one,
the developers sign up for the tasks they want to implement. As each developer signs up for a task, he or she esti-
mates that task in arbitrary task points.7

Developers may sign up for any kind of task. Database guys are not constrained to sign up for database
tasks. GUI guys can sign up for database tasks if they like. This may seem inefficient, but as you’ll see, there is a
mechanism that manages this. The benefit is obvious. The more the developers know about the whole project, the
healthier and more informed the project team is. We want knowledge of the project to spread through the team irre-
spective of specialty.

Each developer knows how many task points he or she managed to implement in the last iteration. This num-
ber is their personal budget. No one signs up for more points than they have in their budget.

Task selection continues until either all tasks are assigned or all developers have used their budgets. If there
are tasks remaining, then the developers negotiate with each other, trading tasks based on their various skills. If
this doesn’t make enough room to get all the tasks assigned, then the developers ask the customers to remove tasks
or stories from the iteration. If all the tasks are signed up and the developers still have room in their budgets for
more work, they ask the customers for more stories.

7. Many developers find it helpful to use “perfect programming hours” as their task points.

21
www.EBooksWorld.ir

Chapter 3 • Planning

The Halfway Point

Halfway through the iteration, the team holds a meeting. At this
point, half of the stories scheduled for the iteration should be
complete. If half the stories aren’t complete, then the team tries
to reapportion tasks and responsibilities to ensure that all the sto-
ries will be complete by the end of the iteration. If the developers
cannot find such a reapportionment, then the customers need to
be told. The customers may decide to pull a task or story from
the iteration. At the very least, they will name the lowest priority
tasks and stories so that the developers avoid working on them.

For example, suppose the customers selected eight stories totalling 24 story points for the iteration. Suppose
also that these were broken down into 42 tasks. At the halfway point of the iteration, we would expect to have 21
tasks and 12 story points complete. Those 12 story points must represent wholly completed stories. Our goal is to
complete stories, not just tasks. The nightmare scenario is to get to the end of the iteration with 90% of the tasks
complete, but no stories complete. At the halfway point, we want to see completed stories that represent half the
story points for the iteration.

Iterating
Every two weeks, the current iteration ends and the next begins. At the end of each iteration, the current running
executable is demonstrated to the customers. The customers are asked to evaluate the look, feel, and performance
of the project. They will provide their feedback in terms of new user stories.

The customers see progress frequently. They can measure velocity. They can predict how fast the team is
going, and they can schedule high-priority stories early. In short, they have all the data and control they need to
manage the project to their liking.

Conclusion
From iteration to iteration and release to release, the project falls into a predictable and comfortable rhythm.
Everyone knows what to expect and when to expect it. Stakeholders see progress frequently and substantially.
Rather than being shown notebooks full of diagrams and plans, they are shown working software that they can
touch, feel, and provide feedback on.

Developers see a reasonable plan based upon their own estimates and controlled by their own measured
velocity. They choose the tasks on which they feel comfortable working and keep the quality of their workmanship
high.

Managers receive data every iteration. They use this data to control and manage the project. They don’t have
to resort to pressure, threats, or appeals to loyalty to meet an arbitrary and unrealistic date.

If this sounds like blue sky and apple pie, it’s not. The stakeholders won’t always be happy with the data that
the process produces, especially not at first. Using an agile method does not mean that the stakeholders will get
what they want. It simply means that they’ll be able to control the team to get the most business value for the least
cost.

Bibliography

1. Beck, Kent. Extreme Programming Explained: Embrace Change. Reading, MA: Addison–Wesley, 1999.
2. Newkirk, James, and Robert C. Martin. Extreme Programming in Practice. Upper Saddle River, NJ: Addison–Wesley, 2001.
3. Highsmith, James A. Adaptive Software Development: A Collaborative Approach to Managing Complex Systems. New York: Dorset

House, 2000.

22
www.EBooksWorld.ir

4

Testing

Fire is the test of gold; adversity, of strong men.

—Seneca (c. 3 B.C.–A.D. 65)

The act of writing a unit test is more an act of design than of verification. It is also more an act of documentation
than of verification. The act of writing a unit test closes a remarkable number of feedback loops, the least of which
is the one pertaining to verification of function.

Test Driven Development
What if we designed our tests before we designed our programs? What if we refused to implement a function in
our programs until there was a test that failed because that function wasn’t present? What if we refused to add even
a single line of code to our programs unless there were a test that was failing because of its absence? What if we
incrementally added functionality to our programs by first writing failing tests that asserted the existence of that
functionality, and then made the test pass? What effect would this have on the design of the software we were writ-
ing? What benefits would we derive from the existence of such a comprehensive bevy of tests?

The first and most obvious effect is that every single function of the program has tests that verify its opera-
tion. This suite of tests acts as a backstop for further development. It tells us whenever we inadvertently break
some existing functionality. We can add functions to the program, or change the structure of the program, without

From Chapter 4 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

23
www.EBooksWorld.ir

Chapter 4 • Testing

fear that we will break something important in the process. The tests tell us that the program is still behaving prop-
erly. We are thus much freer to make changes and improvement to our program.

A more important, but less obvious, effect is that the act of writing the test first forces us into a different
point of view. We must view the program we are about to write from the vantage point of a caller of that program.
Thus, we are immediately concerned with the interface of the program as well as its function. By writing the test
first, we design the software to be conveniently callable.

What’s more, by writing the test first, we force ourselves to design the program to be testable. Designing the
program to be callable and testable is remarkably important. In order to be callable and testable, the software has
to be decoupled from its surroundings. Thus, the act of writing tests first forces us to decouple the software!

Another important effect of writing tests first is that the tests act as an invaluable form of documentation. If
you want to know how to call a function or create an object, there is a test that shows you. The tests act as a suite
of examples that help other programmers figure out how to work with the code. This documentation is compileable
and executable. It will stay current. It cannot lie.

An Example of Test-First Design

I recently wrote a version of Hunt the Wumpus, just for fun. This program is a simple adventure game in which the
player moves through a cave trying to kill the Wumpus before the Wumpus eats him. The cave is a set of rooms
that are connected to each other by passageways. Each room may have passages to the north, south, east, or west.
The player moves about by telling the computer which direction to go.

One of the first tests I wrote for this program was testMove in Listing 4-1. This function creates a new
WumpusGame, connects room 4 to room 5 via an east passage, places the player in room 4, issues the command to
move east, and then asserts that the player should be in room 5.

Listing 4-1
public void testMove()
{
 WumpusGame g = new WumpusGame();
 g.connect(4,5,"E");
 g.setPlayerRoom(4);
 g.east();
 assertEquals(5, g.getPlayerRoom());
}

All this code was written before any part of WumpusGame was written. I took Ward Cunningham’s advice
and wrote the test the way I wanted it to read. I trusted that I could make the test pass by writing the code that con-
formed to the structure implied by the test. This is called intentional programming. You state your intent in a test
before you implement it, making your intent as simple and readable as possible. You trust that this simplicity and
clarity points to a good structure for the program.

Programming by intent immediately led me to an interesting design decision. The test makes no use of a
Room class. The action of connecting one room to another communicates my intent. I don’t seem to need a Room
class to facilitate that communication. Instead, I can just use integers to represent the rooms.

This may seem counter intuitive to you. After all, this program may appear to you to be all about rooms;
moving between rooms; finding out what rooms contain; etc. Is the design implied by my intent flawed because it
lacks a Room class?

I could argue that the concept of connections is far more central to the Wumpus game than the concept of
room. I could argue that this initial test pointed out a good way to solve the problem. Indeed, I think that is the
case, but it is not the point I’m trying to make. The point is that the test illuminated a central design issue at a very
early stage. The act of writing tests first is an act of discerning between design decisions.

24
www.EBooksWorld.ir

Test Driven Development

Notice that the test tells you how the program works. Most of us could easily write the four named methods
of WumpusGame from this simple specification. We could also name and write the three other direction commands
without much trouble. If later we want to know how to connect two rooms or move in a particular direction, this
test will show us how to do it in no uncertain terms. This test acts as a compileable and executable document that
describes the program.

Test Isolation

The act of writing tests before production code often exposes areas in the software that ought to be decoupled. For
example, Figure 4-1 shows a simple UML diagram1 of a payroll application. The Payroll class uses the
EmployeeDatabase class to fetch an Employee object. It asks the Employee to calculate its pay. Then it passes
that pay to the CheckWriter object to produce a check. Finally, it posts the payment to the Employee object and
writes the object back to the database.

Presume that we haven’t written any of this code yet. So far, this diagram is just sitting on a whiteboard after
a quick design session.2 Now, we need to write the tests that specify the behavior of the Payroll object. There are
a number of problems associated with writing these tests. First, what database do we use? Payroll needs to read
from some kind of database. Must we write a fully functioning database before we can test the Payroll class?
What data do we load into it? Second, how do we verify that the appropriate check got printed? We can’t write an
automated test that looks on the printer for a check and verifies the amount on it!

The solution to these problems is to use the MOCK OBJECT pattern.3 We can insert interfaces between all the
collaborators of Payroll and create test stubs that implement these interfaces.

Figure 4-2 shows the structure. The Payroll class now uses interfaces to communicate with the
EmployeeDatabase, CheckWriter, and Employee. Three MOCK OBJECTS have been created that implement
these interfaces. These MOCK OBJECTS are queried by the PayrollTest object to see if the Payroll object man-
ages them correctly.

Listing 4-2 shows the intent of the test. It creates the appropriate mock objects, passes them to the Payroll
object, tells the Payroll object to pay all the employees, and then asks the mock objects to verify that all the
checks were written correctly and that all the payments were posted correctly.

1. If you don’t know UML, there are two appendices that describes it in great detail. See Appendices A and B, starting on page 467.

Figure 4-1 Coupled Payroll Model

2. [Jeffries2001].

3. [Mackinnon2000].

CheckWriter

+ writeCheck()

Employee

+ calculatePay()
+ postPayment()

Employee
Database

+ getEmployee
+ putEmployee

Payroll

25
www.EBooksWorld.ir

Chapter 4 • Testing

Listing 4-2

TestPayroll

public void testPayroll()
{
 MockEmployeeDatabase db = new MockEmployeeDatabase();
 MockCheckWriter w = new MockCheckWriter();
 Payroll p = new Payroll(db, w);
 p.payEmployees();
 assert(w.checksWereWrittenCorrectly());
 assert(db.paymentsWerePostedCorrectly());
}

Of course all this test is checking is that Payroll called all the right functions with all the right data. It’s not
actually checking that checks were written. It’s not actually checking that a true database was properly updated.
Rather, it is checking that the Payroll class is behaving as it should in isolation.

You might wonder what the MockEmployee is for. It seems feasible that the real Employee class could be
used instead of a mock. If that were so, then I would have no compunction about using it. In this case, I presumed
that the Employee class was more complex than needed to check the function of Payroll.

Serendipitous Decoupling

The decoupling of Payroll is a good thing. It allows us to swap in different databases and check writers, both for
the purpose of testing and for extension of the application. I think it is interesting that this decoupling was driven
by the need to test. Apparently, the need to isolate the module under test forces us to decouple in ways that are ben-
eficial to the overall structure of the program. Writing tests before code improves our designs.

A large part of this book is about design principles for managing dependencies. Those principles give you
some guidelines and techniques for decoupling classes and packages. You will find these principles most beneficial
if you practice them as part of your unit testing strategy. It is the unit tests that will provide much of the impetus
and direction for decoupling.

Figure 4-2 Decoupled Payroll using Mock Objects for testing

Mock
CheckWriter

«interface»
CheckWriter

Mock
Employee

PayrollTest

Payroll

Mock
Employee
Database

+ writeCheck()

«interface»
Employee

+ calculatePay()
+ postPayment()

«interface»
Employee
Database

+ getEmployee
+ putEmployee

26
www.EBooksWorld.ir

Acceptance Tests

Acceptance Tests
Unit tests are necessary but insufficient as verification tools. Unit tests ver-
ify that the small elements of the system work as they are expected to, but
they do not verify that the system works properly as a whole. Unit tests are
white-box tests4 that verify the individual mechanisms of the system.
Acceptance tests are black-box tests5 that verify that the customer require-
ments are being met.

Acceptance tests are written by folks who do not know the internal
mechanisms of the system. They may be written directly by the customer
or by some technical people attached to the customer, possibly QA. Accep-
tance tests are programs and are therefore executable. However, they are
usually written in a special scripting language created for customers of the
application.

Acceptance tests are the ultimate documentation of a feature. Once
the customer has written the acceptance tests, which verify that a feature is
correct, the programmers can read those acceptance tests to truly understand the feature. So, just as unit tests serve
as compileable and executable documentation for the internals of the system, acceptance tests serve as com-
pileable and executable documentation of the features of the system.

Furthermore, the act of writing acceptance tests first has a profound effect upon the architecture of the sys-
tem. In order to make the system testable, it has to be decoupled at the high architecture level. For example, the
user interface (UI) has to be decoupled from the business rules in such a way that the acceptance tests can gain
access to those business rules without going through the UI.

In the early iterations of a project, the temptation is to do acceptance tests manually. This is inadvisable
because it deprives those early iterations of the decoupling pressure exerted by the need to automate the accep-
tance tests. When you start the very first iteration, knowing full well that you must automate the acceptance tests,
you make very different architectural trade-offs. And, just as unit tests drive you to make superior design decisions
in the small, acceptance tests drive you to make superior architecture decisions in the large.

Creating an acceptance testing framework may seem a daunting task. However, if you take only one itera-
tion’s worth of features and create only that part of the framework necessary for those few acceptance tests, you’ll
find it’s not that hard to write. You’ll also find that the effort is worth the cost.

Example of Acceptance Testing

Consider, again, the payroll application. In our first iteration, we must be able to add and delete employees to and
from the database. We must also be able to create paychecks for the employees currently in the database. Fortu-
nately, we only have to deal with salaried employees. The other kinds of employees have been held back until a
later iteration.

We haven’t written any code yet, and we haven’t invested in any design yet. This is the best time to start
thinking about acceptance tests. Once again, intentional programming is a useful tool. We should write the accep-
tance tests the way we think they should appear, and then we can structure the scripting language and payroll sys-
tem around that structure.

I want to make the acceptance tests convenient to write and easy to change. I want them to be placed in a
configuration-management tool and saved so that I can run them anytime I please. Therefore, it makes sense that
the acceptance tests should be written in simple text files.

4. A test that knows and depends on the internal structure of the module being tested.

5. A test that does not know or depend on the internal structure of the module being tested.

27
www.EBooksWorld.ir

Chapter 4 • Testing

The following is an example of an acceptance-test script:

AddEmp 1429 “Robert Martin” 3215.88
Payday
Verify Paycheck EmpId 1429 GrossPay 3215.88

In this example, we add employee number 1429 to the database. His name is “Robert Martin,” and his
monthly pay is $3215.88. Next, we tell the system that it is payday and that it needs to pay all the employees.
Finally, we verify that a paycheck was generated for employee 1429 with a GrossPay field of $3215.88.

Clearly, this kind of script will be very easy for customers to write. Also, it will be easy to add new function-
ality to this kind of script. However, think about what it implies about the structure of the system.

The first two lines of the script are functions of the payroll application. We might call these lines payroll
transactions. These are functions that payroll users expect. However, the Verify line is not a transaction that the
users of payroll would expect. This line is a directive that is specific to the acceptance test.

Thus, our acceptance testing framework will have to parse this text file, separating the payroll transactions
from the acceptance-testing directives. It must send the payroll transactions to the payroll application and then use
the acceptance-testing directives to query the payroll application in order to verify data.

This already puts architectural stress on the payroll program. The payroll program is going to have to accept
input directly from users and also from the acceptance-testing framework. We want to bring those two paths of
input together as early as possible. So, it looks as if the payroll program will need a transaction processor that can
deal with transactions of the form AddEmp and Payday coming from more than one source. We need to find some
common form for those transactions so that the amount of specialized code is kept to a minimum.

One solution would be to feed the transactions into the payroll application in XML. The acceptance-testing
framework could certainly generate XML, and it seems likely that the UI of the payroll system could also generate
XML. Thus, we might see transactions that looked like the following:

<AddEmp PayType=Salaried>
 <EmpId>1429</EmpId>
 <Name>Robert Martin</Name>
 <Salary>3215.88</Salary>
</AddEmp>

These transactions might enter the payroll application through a subroutine call, a socket, or even a batch
input file. Indeed, it would be a trivial matter to change from one to the other during the course of development. So
during the early iterations, we could decide to read transactions from a file, migrating to an API or socket much
later.

How does the acceptance-test framework invoke the Verify directive? Clearly it must have some way to
access the data produced by the payroll application. Once again, we don’t want the acceptance-testing framework
to have to try to read the writing on a printed check, but we can do the next best thing.

We can have the payroll application produce its paychecks in XML. The acceptance-testing framework can
then catch this XML and query it for the appropriate data. The final step of printing the check from the XML may
be trivial enough to handle through manual acceptance tests.

Therefore, the payroll application can create an XML document that contains all the paychecks. It might
look like this:

<Paycheck>
 <EmpId>1429</EmpId>
 <Name>Robert Martin</Name>
 <GrossPay>3215.88</GrossPay>
</Paycheck>

28
www.EBooksWorld.ir

Conclusion

Clearly, the acceptance-testing framework can execute the Verify directive when supplied with this XML.
Once again, we can spit the XML out through a socket, through an API, or into a file. For the initial itera-

tions, a file is probably easiest. Therefore, the payroll application will begin its life reading XML transactions in
from a file and outputting XML paychecks to a file. The acceptance-testing framework will read transactions in
text form, translating them to XML and writing them to a file. It will then invoke the payroll program. Finally, it
will read the output XML from the payroll program and invoke the Verify directives.

Serendipitous Architecture

Notice the pressure that the acceptance tests placed upon the architecture of the payroll system. The very fact that
we considered the tests first led us to the notion of XML input and output very quickly. This architecture has
decoupled the transaction sources from the payroll application. It has also decoupled the paycheck printing mech-
anism from the payroll application. These are good architectural decisions.

Conclusion
The simpler it is to run a suite of tests, the more often those tests will be run. The more the tests are run, the faster
any deviation from those tests will be found. If we can run all the tests several times a day, then the system will
never be broken for more than a few minutes. This is a reasonable goal. We simply don’t allow the system to back-
slide. Once it works to a certain level, it never backslides to a lower level.

Yet verification is just one of the benefits of writing tests. Both unit tests and acceptance tests are a form of
documentation. That documentation is compileable and executable; therefore, it is accurate and reliable. More-
over, these tests are written in unambiguous languages that are made to be readable by their audience. Program-
mers can read unit tests because they are written in their programming language. Customers can read acceptance
tests because they are written in a language that they themselves designed.

Possibly the most important benefit of all this testing is the impact it has on architecture and design. To make
a module or an application testable, it must also be decoupled. The more testable it is, the more decoupled it is.
The act of considering comprehensive acceptance and unit tests has a profoundly positive effect upon the structure
of the software.

Bibliography

1. Mackinnon, Tim, Steve Freeman, and Philip Craig. Endo-Testing: Unit Testing with Mock Objects. Extreme Programming Examined.
Addison–Wesley, 2001.

2. Jeffries, Ron, et al., Extreme Programming Installed. Upper Saddle River, NJ: Addison–Wesley, 2001.

29
www.EBooksWorld.ir

30
www.EBooksWorld.ir

5

Refactoring

The only factor becoming scarce in a world of abundance is human attention.

—Kevin Kelly, in Wired

This chapter is about human attention. It is about paying attention to what you are doing and making sure you are
doing your best. It is about the difference between getting something to work and getting something right. It is
about the value we place in the structure of our code.

In his classic book, Refactoring, Martin Fowler defines refactoring as “...the process of changing a software
system in such a way that it does not alter the external behavior of the code yet improves its internal structure.”1

But why would we want to improve the structure of working code? What about the old saw, “if it’s not broken,
don’t fix it!”?

Every software module has three functions. First, there is the function it performs while executing. This
function is the reason for the module’s existence. The second function of a module is to afford change. Almost all
modules will change in the course of their lives, and it is the responsibility of the developers to make sure that such
changes are as simple as possible to make. A module that is hard to change is broken and needs fixing, even though
it works. The third function of a module is to communicate to its readers. Developers unfamiliar with the module
should be able to read and understand it without undue mental gymnastics. A module that does not communicate is
broken and needs to be fixed.

1. [Fowler99], p. xvi.

From Chapter 5 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

31
www.EBooksWorld.ir

Chapter 5 • Refactoring

What does it take to make a module easy to read and easy to change? Much of this book is dedicated to prin-
ciples and patterns whose primary goal is to help you create modules that are flexible and adaptable. However, it
takes something more than just principles and patterns to make a module that is easy to read and change. It takes
attention. It takes discipline. It takes a passion for creating beauty.

Generating Primes: A Simple Example of Refactoring2

Consider the code in Listing 5–1. This program generates prime numbers. It is one big function with many single
letter variables and comments to help us read it.

Listing 5-1

GeneratePrimes.java version 1

/**
 * This class generates prime numbers up to a user-specified
 * maximum. The algorithm used is the Sieve of Eratosthenes.
 * <p>
 * Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya --
 * d. c. 194, Alexandria. The first man to calculate the
 * circumference of the Earth. Also known for working on
 * calendars with leap years, he ran the library at Alexandria.
 * <p>
 * The algorithm is quite simple. Given an array of integers
 * starting at 2. Cross out all multiples of 2. Find the next
 * uncrossed integer, and cross out all of its multiples.
 * Repeat until you have passed the square root of the maximum
 * value.
 *
 * @author Robert C. Martin
 * @version 9 Dec 1999 rcm
 */
import java.util.*;

public class GeneratePrimes
{
 /**
 * @param maxValue is the generation limit.
 */
 public static int[] generatePrimes(int maxValue)
 {
 if (maxValue >= 2) // the only valid case
 {
 // declarations
 int s = maxValue + 1; // size of array
 boolean[] f = new boolean[s];
 int i;

 // initialize array to true.
 for (i = 0; i < s; i++)
 f[i] = true;

2. I initially wrote this program for XP Immersion I using tests written by Jim Newkirk. Kent Beck and Jim Newkirk refactored it in front
of the students. I have tried to recreate that refactoring here.

32
www.EBooksWorld.ir

Generating Primes: A Simple Example of Refactoring

 // get rid of known non-primes
 f[0] = f[1] = false;

 // sieve
 int j;
 for (i = 2; i < Math.sqrt(s) + 1; i++)
 {
 if (f[i]) // if i is uncrossed, cross its multiples.
 {
 for (j = 2 * i; j < s; j += i)
 f[j] = false; // multiple is not prime
 }
 }

 // how many primes are there?
 int count = 0;
 for (i = 0; i < s; i++)
 {
 if (f[i])
 count++; // bump count.
 }

 int[] primes = new int[count];

 // move the primes into the result
 for (i = 0, j = 0; i < s; i++)
 {
 if (f[i]) // if prime
 primes[j++] = i;
 }

 return primes; // return the primes
 }
 else // maxValue < 2
 return new int[0]; // return null array if bad input.
 }
}

The unit test for GeneratePrimes is shown in Listing 5–2. It takes a statistical approach, checking to see if
the generator can generate primes up to 0, 2, 3, and 100. In the first case there should be no primes. In the second
there should be one prime, and it should be 2. In the third there should be two primes, and they should be 2 and 3.
In the last case there should be 25 primes, the last of which is 97. If all these tests pass, then I make the assumption
that the generator is working. I doubt this is foolproof, but I can’t think of a reasonable scenario where these tests
would pass and yet the function would fail.

Listing 5-2

TestGeneratePrimes.java

import junit.framework.*;
import java.util.*;

public class TestGeneratePrimes extends TestCase
{
 public static void main(String args[])

33
www.EBooksWorld.ir

Chapter 5 • Refactoring

 {
 junit.swingui.TestRunner.main(
 new String[] {"TestGeneratePrimes"});
 }
 public TestGeneratePrimes(String name)
 {
 super(name);
 }

 public void testPrimes()
 {
 int[] nullArray = GeneratePrimes.generatePrimes(0);
 assertEquals(nullArray.length, 0);

 int[] minArray = GeneratePrimes.generatePrimes(2);
 assertEquals(minArray.length, 1);
 assertEquals(minArray[0], 2);

 int[] threeArray = GeneratePrimes.generatePrimes(3);
 assertEquals(threeArray.length, 2);
 assertEquals(threeArray[0], 2);
 assertEquals(threeArray[1], 3);

 int[] centArray = GeneratePrimes.generatePrimes(100);
 assertEquals(centArray.length, 25);
 assertEquals(centArray[24], 97);
 }
}

To help me refactor this program, I am using the Idea refactoring browser from IntelliJ. This tool makes it
trivial to extract methods and rename variables and classes.

It seems pretty clear that the main function wants to be three separate functions. The first initializes all the
variables and sets up the sieve. The second actually executes the sieve, and the third loads the sieved results into an
integer array. To expose this structure more clearly in Listing 5–3, I extracted those functions into three separate
methods. I also removed a few unnecessary comments and changed the name of the class to PrimeGenerator.
The tests all still ran.

Extracting the three functions forced me to promote some of the variables of the function to static fields of
the class. I think this clarifies which variables are local and which have wider influence.

Listing 5-3

PrimeGenerator.java, version 2

/**
 * This class generates prime numbers up to a user-specified
 * maximum. The algorithm used is the Sieve of Eratosthenes.
 * Given an array of integers starting at 2:
 * Find the first uncrossed integer, and cross out all its
 * multiples. Repeat until the first uncrossed integer exceeds
 * the square root of the maximum value.
 */
import java.util.*;

34
www.EBooksWorld.ir

Generating Primes: A Simple Example of Refactoring

public class PrimeGenerator
{
 private static int s;
 private static boolean[] f;
 private static int[] primes;

 public static int[] generatePrimes(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 initializeSieve(maxValue);
 sieve();
 loadPrimes();
 return primes; // return the primes
 }
 }

 private static void loadPrimes()
 {
 int i;
 int j;

 // how many primes are there?
 int count = 0;
 for (i = 0; i < s; i++)
 {
 if (f[i])
 count++; // bump count.
 }

 primes = new int[count];

 // move the primes into the result
 for (i = 0, j = 0; i < s; i++)
 {
 if (f[i]) // if prime
 primes[j++] = i;
 }
 }

 private static void sieve()
 {
 int i;
 int j;
 for (i = 2; i < Math.sqrt(s) + 1; i++)
 {
 if (f[i]) // if i is uncrossed, cross out its multiples.
 {
 for (j = 2 * i; j < s; j += i)
 f[j] = false; // multiple is not prime
 }
 }
 }

35
www.EBooksWorld.ir

Chapter 5 • Refactoring

 private static void initializeSieve(int maxValue)
 {
 // declarations
 s = maxValue + 1; // size of array
 f = new boolean[s];
 int i;

 // initialize array to true.
 for (i = 0; i < s; i++)
 f[i] = true;

 // get rid of known non-primes
 f[0] = f[1] = false;
 }
}

The initializeSieve function is a little messy, so in Listing 5–4, I cleaned it up considerably. First, I
replaced all usages of the s variable with f.length. Then, I changed the names of the three functions to
something a bit more expressive. Finally, I rearranged the innards of initializeArrayOfIntegers (née
initializeSieve) to be a little nicer to read. The tests all still ran.

Listing 5-4

PrimeGenerator.java, version 3 (partial)

public class PrimeGenerator
{
 private static boolean[] f;
 private static int[] result;

 public static int[] generatePrimes(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 initializeArrayOfIntegers(maxValue);
 crossOutMultiples();
 putUncrossedIntegersIntoResult();
 return result;
 }
 }

 private static void initializeArrayOfIntegers(int maxValue)
 {
 f = new boolean[maxValue + 1];
 f[0] = f[1] = false; //neither primes nor multiples.
 for (int i = 2; i < f.length; i++)
 f[i] = true;
 }

Next, I looked at crossOutMultiples. There were a number of statements in this function, and in others,
of the form if(f[i] == true). The intent was to check to see if i was uncrossed, so I changed the name of f to
unCrossed. But this lead to ugly statements like unCrossed[i] = false. I found the double negative confus-
ing. So I changed the name of the array to isCrossed and changed the sense of all the booleans. The tests all
still ran.

36
www.EBooksWorld.ir

Generating Primes: A Simple Example of Refactoring

I got rid of the initialization that set isCrossed[0] and isCrossed[1] to true and just made sure that no
part of the function used the isCrossed array for indexes less than 2. I extracted the inner loop of the
crossOutMultiples function and called it crossOutMultiplesOf. I also thought that if(isCrossed[i]
== false) was confusing, so I created a function called notCrossed and changed the if statement to if
(notCrossed(i)). The tests all still ran.

I spent a bit of time writing a comment that tried to explain why you only have to iterate up to the square root
of the array size. This led me to extract the calculation into a function, where I could put the explanatory comment.
In writing the comment, I realized that the square root is the maximum prime factor of any integer in the array. So
I chose that name for the variables and functions that dealt with it. The result of all these refactorings are in Listing
5–5. The tests all still ran.

Listing 5-5

PrimeGenerator.java version 4 (partial)

public class PrimeGenerator
{
 private static boolean[] isCrossed;
 private static int[] result;

 public static int[] generatePrimes(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 initializeArrayOfIntegers(maxValue);
 crossOutMultiples();
 putUncrossedIntegersIntoResult();
 return result;
 }
 }

 private static void initializeArrayOfIntegers(int maxValue)
 {
 isCrossed = new boolean[maxValue + 1];
 for (int i = 2; i < isCrossed.length; i++)
 isCrossed[i] = false;
 }

 private static void crossOutMultiples()
 {
 int maxPrimeFactor = calcMaxPrimeFactor();
 for (int i = 2; i <= maxPrimeFactor; i++)
 if (notCrossed(i))
 crossOutMultiplesOf(i);
 }

 private static int calcMaxPrimeFactor()
 {
 // We cross out all multiples of p, where p is prime.
 // Thus, all crossed out multiples have p and q for
 // factors. If p > sqrt of the size of the array, then
 // q will never be greater than 1. Thus p is the
 // largest prime factor in the array, and is also
 // the iteration limit.

37
www.EBooksWorld.ir

Chapter 5 • Refactoring

 double maxPrimeFactor = Math.sqrt(isCrossed.length) + 1;
 return (int) maxPrimeFactor;
 }

 private static void crossOutMultiplesOf(int i)
 {
 for (int multiple = 2*i;
 multiple < isCrossed.length;
 multiple += i)
 isCrossed[multiple] = true;
 }

 private static boolean notCrossed(int i)
 {
 return isCrossed[i] == false;
 }

The last function to refactor is putUncrossedIntegersIntoResult. This method has two parts. The first
counts the number of uncrossed integers in the array and creates the result array of that size. The second moves the
uncrossed integers into the result array. I extracted the first part into its own function and did some miscellaneous
cleanup. The tests all still ran.

Listing 5-6

PrimeGenerator.java, version 5 (partial)

private static void putUncrossedIntegersIntoResult()
 {
 result = new int[numberOfUncrossedIntegers()];
 for (int j = 0, i = 2; i < isCrossed.length; i++)
 if (notCrossed(i))
 result[j++] = i;
 }

 private static int numberOfUncrossedIntegers()
 {
 int count = 0;
 for (int i = 2; i < isCrossed.length; i++)
 if (notCrossed(i))
 count++;

 return count;
 }

The Final Reread

Next, I made one final pass over the whole program, reading it from beginning
to end, rather like one would read a geometric proof. This is an important step.
So far, I’ve been refactoring fragments. Now, I want to see if the whole pro-
gram hangs together as a readable whole.

First, I realize that I don’t like the name initializeArrayOf-
Integers. What’s being initialized is not, in fact, an array of integers, it’s an
array of booleans. However, initializeArrayOfBooleans is not an
improvement. What we are really doing in this method is uncrossing all the relevant integers so that we can then
cross out the multiples. So I change the name to uncrossIntegersUpTo. I also realize that I don’t like the name
isCrossed for the array of booleans. So I change it to crossedOut. The tests all still run.

38
www.EBooksWorld.ir

Generating Primes: A Simple Example of Refactoring

One might think I’m being frivolous with these name changes, but with a refactoring browser you can afford
to do these kinds of tweaks—they cost virtually nothing. Even without a refactoring browser, a simple search and
replace is pretty cheap. And the tests strongly mitigate any chance that we might unknowingly break something.

I don’t know what I was smoking when I wrote all that maxPrimeFactor stuff. Yikes! The square root of
the size of the array is not necessarily prime. That method did not calculate the maximum prime factor. The
explanatory comment was just wrong. So I rewrote the comment to better explain the rationale behind the square
root and renamed all the variables appropriately.3 The tests all still run.

What the devil is that +1 doing in there? I think it must have been paranoia. I was afraid that a fractional
square root would convert to an integer that was too small to serve as the iteration limit. But that’s silly. The true
iteration limit is the largest prime less than or equal to the square root of the size of the array. I’ll get rid of the +1.

The tests all run, but that last change makes me pretty nervous. I understand the rationale behind the square
root, but I’ve got a nagging feeling that there may be some corner cases that aren’t being covered. So I’ll write
another test to check that there are no multiples in any of the prime lists between 2 and 500. (See the
testExhaustive function in Listing 5–8.) The new test passes, and my fears are allayed.

The rest of the code reads pretty nicely. So I think we’re done. The final version is shown in Listings 5–7
and 5–8.

Listing 5-7

PrimeGenerator.java (final)

/**
 * This class generates prime numbers up to a user specified
 * maximum. The algorithm used is the Sieve of Eratosthenes.
 * Given an array of integers starting at 2:
 * Find the first uncrossed integer, and cross out all its
 * multiples. Repeat until there are no more multiples
 * in the array.
 */

public class PrimeGenerator
{
 private static boolean[] crossedOut;
 private static int[] result;

 public static int[] generatePrimes(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 uncrossIntegersUpTo(maxValue);
 crossOutMultiples();
 putUncrossedIntegersIntoResult();
 return result;
 }
 }

 private static void uncrossIntegersUpTo(int maxValue)
 {

3. When Kent Beck and Jim Newkirk refactored this program, they did away with the square root altogether. Kent’s rationale was that the
square root was hard to understand, and there was no test that failed if you iterated right up to the size of the array. I can’t bring myself
to give up the efficiency. I guess that shows my assembly-language roots.

39
www.EBooksWorld.ir

Chapter 5 • Refactoring

 crossedOut = new boolean[maxValue + 1];
 for (int i = 2; i < crossedOut.length; i++)
 crossedOut[i] = false;
 }

 private static void crossOutMultiples()
 {
 int limit = determineIterationLimit();
 for (int i = 2; i <= limit; i++)
 if (notCrossed(i))
 crossOutMultiplesOf(i);
 }

 private static int determineIterationLimit()
 {
 // Every multiple in the array has a prime factor that
 // is less than or equal to the sqrt of the array size,
 // so we don't have to cross out multiples of numbers
 // larger than that root.
 double iterationLimit = Math.sqrt(crossedOut.length);
 return (int) iterationLimit;
 }

 private static void crossOutMultiplesOf(int i)
 {
 for (int multiple = 2*i;
 multiple < crossedOut.length;
 multiple += i)
 crossedOut[multiple] = true;
 }

 private static boolean notCrossed(int i)
 {
 return crossedOut[i] == false;
 }

 private static void putUncrossedIntegersIntoResult()
 {
 result = new int[numberOfUncrossedIntegers()];
 for (int j = 0, i = 2; i < crossedOut.length; i++)
 if (notCrossed(i))
 result[j++] = i;
 }

 private static int numberOfUncrossedIntegers()
 {
 int count = 0;
 for (int i = 2; i < crossedOut.length; i++)
 if (notCrossed(i))
 count++;

 return count;
 }
}

40
www.EBooksWorld.ir

Generating Primes: A Simple Example of Refactoring

Listing 5-8

TestGeneratePrimes.java (final)

import junit.framework.*;

public class TestGeneratePrimes extends TestCase
{
 public static void main(String args[])
 {
 junit.swingui.TestRunner.main(
 new String[] {"TestGeneratePrimes"});
 }
 public TestGeneratePrimes(String name)
 {
 super(name);
 }

 public void testPrimes()
 {
 int[] nullArray = PrimeGenerator.generatePrimes(0);
 assertEquals(nullArray.length, 0);

 int[] minArray = PrimeGenerator.generatePrimes(2);
 assertEquals(minArray.length, 1);
 assertEquals(minArray[0], 2);

 int[] threeArray = PrimeGenerator.generatePrimes(3);
 assertEquals(threeArray.length, 2);
 assertEquals(threeArray[0], 2);
 assertEquals(threeArray[1], 3);

 int[] centArray = PrimeGenerator.generatePrimes(100);
 assertEquals(centArray.length, 25);
 assertEquals(centArray[24], 97);
 }

 public void testExhaustive()
 {
 for (int i = 2; i<500; i++)
 verifyPrimeList(PrimeGenerator.generatePrimes(i));
 }

 private void verifyPrimeList(int[] list)
 {
 for (int i=0; i<list.length; i++)
 verifyPrime(list[i]);
 }

 private void verifyPrime(int n)
 {
 for (int factor=2; factor<n; factor++)
 assert(n%factor != 0);
 }
}

41
www.EBooksWorld.ir

Chapter 5 • Refactoring

Conclusion
The end result of this program reads much better than it did at the start. The program also works a bit better. I’m
pretty pleased with the outcome. The program is much easier to understand and is therefore much easier to change.
Also, the structure of the program has isolated its parts from one another. This also makes the program much easier
to change.

You might be worried that extracting functions that are only called once might adversely affect performance.
I think the increased readability is worth a few extra nanoseconds in most cases. However, there may be deep inner
loops where those few nanoseconds will be costly. My advice is to assume that the cost will be negligible and wait
to be proven wrong.

Was this worth the time we invested in it? After all, the function worked when we started. I strongly recom-
mend that you always practice such refactoring for every module you write and for every module you maintain.
The time investment is very small compared to the effort you’ll be saving yourself and others in the near future.

Refactoring is like cleaning up the kitchen after dinner. The first time you skip it, you are done with dinner
more quickly. But that lack of clean dishes and clear working space makes dinner take longer to prepare the next
day. This makes you want to skip cleaning again. Indeed, you can always finish dinner faster today if you skip
cleaning, but the mess builds and builds. Eventually you are spending an inordinate amount of time hunting for the
right cooking utensils, chiseling the encrusted dried food off the dishes, and scrubbing them down so that they are
suitable to cook with. Dinner takes forever. Skipping the cleanup does not really make dinner go faster.

The goal of refactoring, as depicted in this chapter, is to clean your code every day. We don’t want the mess
to build. We don’t want to have to chisel and scrub the encrusted bits that accumulate over time. We want to be able
to extend and modify our system with a minimum of effort. The most important enabler of that ability is the clean-
liness of the code.

I can’t stress this enough. All the principles and patterns in this book come to naught if the code they are
employed within is a mess. Before investing in principles and patterns, invest in clean code.

Bibliography

1. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: Addison–Wesley, 1999.

42
www.EBooksWorld.ir

6

A Programming Episode

Design and programming are human activities; forget that and all is lost.

—Bjarne Stroustrup, 1991

In order to demonstrate the XP programming practices, Bob Koss (RSK) and Bob Martin (RCM) will pair pro-
gram a simple application while you watch like a fly on the wall. We will use test-driven development and a lot of
refactoring to create our application. What follows is a pretty faithful reenactment of a programming episode that
the two Bobs actually did in a hotel room in late 2000.

We made lots of mistakes while doing this. Some of the mistakes are in code, some are in logic, some are in
design, and some are in requirements. As you read, you will see us flail around in all these areas, identifying and
then dealing with our errors and misconceptions. The process is messy—as are all human processes. The result …
well, it’s amazing the order that can arise out of such a messy process.

The program calculates the score of a game of bowling, so it helps if you know the rules. If you don’t know
the rules of bowling, then check out the accompanying sidebar.

From Chapter 6 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

43
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

The Bowling Game
RCM: Will you help me write a little application that calculates bowling scores?

RSK: (Reflects to himself, “The XP practice of pair programming says that I can’t say, “no,” when asked
to help. I suppose that’s especially true when it is your boss who is asking.”) Sure, Bob, I’d be glad
to help.

RCM: OK, great! What I’d like to do is write an application that keeps track of a bowling league. It needs
to record all the games, determine the ranks of the teams, determine the winners and losers of each
weekly match, and accurately score each game.

RSK: Cool. I used to be a pretty good bowler. This will be fun. You rattled off several user stories, which
one would you like to start with?

RCM: Let’s begin with scoring a single game.

RSK: Okay. What does that mean? What are the inputs and outputs for this story?

RCM: It seems to me that the inputs are simply a sequence of throws. A throw is just an integer that tells
how many pins were knocked down by the ball. The output is just the score for each frame.

RSK: I’m assuming you are acting as the customer in this exercise, so what form do you want the inputs
and outputs to be in?

RCM: Yes, I’m the customer. We’ll need a function to call to add throws and another function that gets the
score. Sort of like

throwBall(6);
throwBall(3);
assertEquals(9, getScore());

RSK: OK, we’re going to need some test data. Let me sketch out a little picture of a score card. (See
Figure 6-1.)

RCM: That guy is pretty erratic.

RSK: Or drunk, but it will serve as a decent acceptance test.

Figure 6-1 Typical Bowling Score Card

5

41

14

54

29

6

49

5

60 61

10

77

7

97

6

117 133

62

44
www.EBooksWorld.ir

The Bowling Game

RCM: We’ll need others, but let’s deal with that later. How should we start? Shall we come up with a
design for the system?

RSK: I wouldn’t mind a UML diagram showing the problem domain concepts that we might see from the
score card. That will give us some candidate objects that we can explore further in code.

RCM: (putting on his powerful object designer hat) OK, clearly a Game object consists of a sequence of
ten frames. Each Frame object contains one, two, or three throws.

RSK: Great minds. That was exactly what I was thinking. Let me quickly draw that. (See Figure 6-2.)

RSK: Well, pick a class … any class. Shall we start at the end of the dependency chain and work back-
wards? That will make testing easier.

RCM: Sure, why not. Let’s create a test case for the Throw class.

RSK: (Starts typing.)

//TestThrow.java---------------------------------
import junit.framework.*;

public class TestThrow extends TestCase
{
 public TestThrow(String name)
 {
 super(name);
 }

// public void test????
}

RSK: Do you have a clue what the behavior of a Throw object should be?

RCM: It holds the number of pins knocked down by the player.

RSK: Okay, you just said, in not so many words, that it doesn’t really do anything. Maybe we should
come back to it and focus on an object that actually has behavior, instead of one that’s just a data
store.

RCM: Hmm. You mean the Throw class might not really exist?

RSK: Well, if it doesn’t have any behavior, how important can it be? I don’t know if it exists or not yet. I’d
just feel more productive if we were working on an object that had more than setters and getters for
methods. But if you want to drive … (slides the keyboard to RCM).

RCM: Well, let’s move up the dependency chain to Frame and see if there are any test cases we can write
that will force us to finish Throw. (Pushes the keyboard back to RSK.)

RSK: (Wondering if RCM is leading me down a blind alley to educate me or if he is really agreeing with
me.) Okay, new file, new test case.

//TestFrame.java------------------------------------
import junit.framework.*;

Figure 6-2 UML Diagram of Bowling Score Card

10
FrameGame

1..3
Throw

45
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

public class TestFrame extends TestCase
{
 public TestFrame(String name)
 {
 super(name);
 }
 //public void test???
}

RCM: OK, that’s the second time we’ve typed that. Now, can you think of any interesting test cases for
Frame?

RSK: A Frame might provide its score, the number of pins on each throw, whether there was a strike or a
spare . . .

RCM: OK, show me the code.

RSK: (types)

//TestFrame.java---------------------------------
import junit.framework.*;

public class TestFrame extends TestCase
{
 public TestFrame(String name)
 {
 super(name);
 }

 public void testScoreNoThrows()
 {
 Frame f = new Frame();
 assertEquals(0, f.getScore());
 }
}

//Frame.java---------------------------------------
public class Frame
{
 public int getScore()
 {
 return 0;
 }
}

RCM: OK, the test case passes, but getScore is a really stupid function. It will fail if we add a throw to
the Frame. So let’s write the test case that adds some throws and then checks the score.

//TestFrame.java---------------------------------

 public void testAddOneThrow()
 {
 Frame f = new Frame();
 f.add(5);
 assertEquals(5, f.getScore());
 }

46
www.EBooksWorld.ir

The Bowling Game

RCM: That doesn’t compile. There’s no add method in Frame.

RSK: I’ll bet if you define the method, it will compile ;-)

RCM:

//Frame.java---------------------------------------
public class Frame
{
 public int getScore()
 {
 return 0;
 }

 public void add(Throw t)
 {
 }
}

RCM: (thinking out loud) This doesn’t compile because we haven’t written the Throw class.

RSK: Talk to me, Bob. The test is passing an integer, and the method expects a Throw object. You can’t
have it both ways. Before we go down the Throw path again, can you describe its behavior?

RCM: Wow! I didn’t even notice that I had written f.add(5). I should have written f.add(new
Throw(5)), but that’s ugly as hell. What I really want to write is f.add(5).

RSK: Ugly or not, let’s leave aesthetics out of it for the time being. Can you describe any behavior of a
Throw object—binary response, Bob?

RCM: 101101011010100101. I don’t know if there is any behavior in Throw. I’m beginning to think a
Throw is just an int. However, we don’t need to consider that yet since we can write Frame.add
to take an int.

RSK: Then I think we should do that for no other reason than it’s simple. When we feel pain, we can do
something more sophisticated.

RCM: Agreed.

//Frame.java---------------------------------------
public class Frame
{
 public int getScore()
 {
 return 0;
 }

 public void add(int pins)
 {
 }
}

RCM: OK, this compiles and fails the test. Now, let’s make the test pass.

//Frame.java---------------------------------------
public class Frame
{
 public int getScore()

47
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 {
 return itsScore;
 }

 public void add(int pins)
 {
 itsScore += pins;
 }
 private int itsScore = 0;
}

RCM: This compiles and passes the tests, but it’s clearly simplistic. What’s the next test case?

RSK: Can we take a break first?

------------------------------Break----------------------------

RCM: That’s better.

Frame.add is a fragile function. What if you call it with an 11?

RSK: It can throw an exception if that happens. But, who is calling it? Is this going to be an application
framework that thousands of people will use and we have to protect against such things, or is this
going to be used by you and only you? If the latter, just don’t call it with an 11 (chuckle).

RCM: Good point, the tests in the rest of the system will catch an invalid argument. If we run into trouble,
we can put the check in later.

So, the add function doesn’t currently handle strikes or spares. Let’s write a test case that expresses
that.

RSK: Hmmmm . . . if we call add(10) to represent a strike, what should getScore() return? I don’t
know how to write the assertion, so maybe we’re asking the wrong question. Or we’re asking the
right question to the wrong object.

RCM: When you call add(10), or add(3) followed by add(7), then calling getScore on the Frame is
meaningless. The Frame would have to look at later Frame instances to calculate its score. If those
later Frame instances don’t exist, then it would have to return something ugly, like -1. I don’t want
to return -1.

RSK: Yeah, I hate the -1 idea too. You’ve introduced the idea of Frames knowing about other Frames.
Who is holding these different Frame objects?

RCM: The Game object.

RSK: So Game depends on Frame; and Frame, in turn, depends back on Game. I hate that.

RCM: Frames don’t have to depend on Game, they could be arranged in a linked list. Each Frame could
hold pointers to its next and previous Frames. To get the score from a Frame, the Frame would
look backward to get the score of the previous Frame and forward for any spare or strike balls it
needs.

RSK: Okay, I’m feeling kind of dumb because I can’t visualize this. Show me some code.

RCM: Right. So we need a test case first.

RSK: For Game or another test for Frame?

RCM: I think we need one for Game, since it’s Game that will build the Frames and hook them up to each
other.

48
www.EBooksWorld.ir

The Bowling Game

RSK: Do you want to stop what we’re doing on Frame and do a mental longjump to Game, or do you
just want to have a MockGame object that does just what we need to get Frame working?

RCM: No, let’s stop working on Frame and start working on Game. The test cases in Game should prove
that we need the linked list of Frames.

RSK: I’m not sure how they’ll show the need for the list. I need code.

RCM: (types)

//TestGame.java--
import junit.framework.*;

public class TestGame extends TestCase
{
 public TestGame(String name)
 {
 super(name);
 }

 public void testOneThrow()
 {
 Game g = new Game();
 g.add(5);
 assertEquals(5, g.score());
 }

}

RCM: Does that look reasonable?

RSK: Sure, but I’m still looking for proof for this list of Frames.

RCM: Me too. Let’s keep following these test cases and see where they lead.

//Game.java----------------------------------
public class Game
{
 public int score()
 {
 return 0;
 }

 public void add(int pins)
 {
 }
}

RCM: OK, this compiles and fails the test. Now let’s make it pass.

//Game.java----------------------------------
public class Game
{
 public int score()
 {
 return itsScore;
 }

49
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 public void add(int pins)
 {
 itsScore += pins;
 }
 private int itsScore = 0;
}

RCM: This passes. Good.

RSK: I can’t disagree with it, but I’m still looking for this great proof of the need for a linked list of
Frame objects. That’s what led us to Game in the first place.

RCM: Yeah, that’s what I’m looking for too. I fully expect that once we start injecting spare and strike test
cases, we’ll have to build Frames and tie them together in a linked list. But I don’t want to build
that until the code forces us to.

RSK: Good point. Let’s keep going in small steps on Game. What about another test that tests two throws
but with no spare?

RCM: OK, that should pass right now. Let’s try it.

//TestGame.java--

 public void testTwoThrowsNoMark()
 {
 Game g = new Game();
 g.add(5);
 g.add(4);
 assertEquals(9, g.score());
 }

RCM: Yep, that one passes. Now let’s try four balls with no marks.

RSK: Well that will pass, too. I didn’t expect this. We can keep adding throws, and we don’t ever even
need a Frame. But we haven’t done a spare or a strike yet. Maybe that’s when we’ll have to make
one.

RCM: That’s what I’m counting on. However, consider this test case:

//TestGame.java--
public void testFourThrowsNoMark()
 {
 Game g = new Game();
 g.add(5);
 g.add(4);
 g.add(7);
 g.add(2);
 assertEquals(18, g.score());
 assertEquals(9, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
 }

RCM: Does this look reasonable?

RSK: It sure does. I forgot that we have to be able to show the score in each frame. Ah, our sketch of the
score card was serving as a coaster for my Diet Coke. Yeah, that’s why I forgot.

RCM: (sigh) OK, first let’s make this test case fail by adding the scoreForFrame method to Game.

50
www.EBooksWorld.ir

The Bowling Game

//Game.java----------------------------------

 public int scoreForFrame(int frame)
 {
 return 0;
 }

RCM: Great, this compiles and fails. Now, how do we make it pass?

RSK: We can start making Frame objects, but is that the simplest thing that will get the test to pass?

RCM: No, actually, we could just create an array of integers in the Game. Each call to add would append a
new integer onto the array. Each call to scoreForFrame will just work forward through the array
and calculate the score.

//Game.java----------------------------------
public class Game
{
 public int score()
 {
 return itsScore;
 }

 public void add(int pins)
 {
 itsThrows[itsCurrentThrow++]=pins;
 itsScore += pins;
 }

 public int scoreForFrame(int frame)
 {
 int score = 0;
 for (int ball = 0;
 frame > 0 && (ball < itsCurrentThrow);
 ball+=2, frame--)
 {
 score += itsThrows[ball] + itsThrows[ball+1];
 }
 return score;
 }
 private int itsScore = 0;
 private int[] itsThrows = new int[21];
 private int itsCurrentThrow = 0;
}

RCM: (very satisfied with himself) There, that works.

RSK: Why the magic number 21?

RCM: That’s the maximum possible number of throws in a game.

RSK: Yuck. Let me guess, in your youth you were a Unix hacker and prided yourself on writing an entire
application in one statement that nobody else could decipher.

 scoreForFrame() needs to be refactored to be more communicative. But before we consider
refactoring, let me ask another question. Is Game the best place for this method? In my mind, Game

51
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

is violating the Single Responsibility Principle.1 It is accepting throws and it knows how to score
for each frame. What would you think about a Scorer object?

RCM: (makes a rude oscillating gesture with his hand) I don’t know where the functions live now; right
now I’m interested in getting the scoring stuff to work. Once we’ve got that all in place, then we can
debate the values of the SRP.

However, I see your point about the Unix hacker stuff; let’s try to simplify that loop.

public int scoreForFrame(int theFrame)
{
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 score += itsThrows[ball++] + itsThrows[ball++];
 }

 return score;
}

RCM: That’s a little better, but there are side effects in the score+= expression. They don’t matter here
because it doesn’t matter which order the two addend expressions are evaluated in. (Or does it? Is it
possible that the two increments could be done before either array operation?)

RSK: I suppose we could do an experiment to verify that there aren’t any side effects, but that function
isn’t going to work with spares and strikes. Should we keep trying to make it more readable, or
should we push further on its functionality?

RCM: The experiment might only have meaning on certain compilers. Other compilers might use different
evaluation orders. I don’t know if this is an issue or not, but let’s get rid of the potential order
dependency and then push on with more test cases.

public int scoreForFrame(int theFrame)
{
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 int firstThrow = itsThrows[ball++];
 int secondThrow = itsThrows[ball++];
 score += firstThrow + secondThrow;
 }

 return score;
}

RCM: OK, next test case. Let’s try a spare.

1. See “SRP: The Single-Responsibility Principle” on page 95.

52
www.EBooksWorld.ir

The Bowling Game

public void testSimpleSpare()
{
 Game g = new Game();
}

RCM: I’m tired of writing this. Let’s refactor the test and put the creation of the game in a setUp function.

//TestGame.java--
import junit.framework.*;

public class TestGame extends TestCase
{
 public TestGame(String name)
 {
 super(name);
 }

 private Game g;

 public void setUp()
 {
 g = new Game();
 }

 public void testOneThrow()
 {
 g.add(5);
 assertEquals(5, g.score());
 }

 public void testTwoThrowsNoMark()
 {
 g.add(5);
 g.add(4);
 assertEquals(9, g.score());
 }

 public void testFourThrowsNoMark()
 {
 g.add(5);
 g.add(4);
 g.add(7);
 g.add(2);
 assertEquals(18, g.score());
 assertEquals(9, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
 }

 public void testSimpleSpare()
 {
 }
}

RCM: That’s better, now let’s write the spare test case.

53
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

public void testSimpleSpare()
{
 g.add(3);
 g.add(7);
 g.add(3);
 assertEquals(13, g.scoreForFrame(1));
}

RCM: OK, that test case fails. Now we need to make it pass.

RSK: I’ll drive.

public int scoreForFrame(int theFrame)
{
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 int firstThrow = itsThrows[ball++];
 int secondThrow = itsThrows[ball++];

 int frameScore = firstThrow + secondThrow;
 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + itsThrows[ball++];
 else
 score += frameScore;
 }

 return score;
}

RSK: Yee-HA! That works!

RCM: (grabbing the keyboard) OK, but I think the increment of ball in the frameScore==10 case
shouldn’t be there. Here’s a test case that proves my point.

public void testSimpleFrameAfterSpare()
{
 g.add(3);
 g.add(7);
 g.add(3);
 g.add(2);
 assertEquals(13, g.scoreForFrame(1));
 assertEquals(18, g.score());
}

RCM: Ha! See, that fails. Now if we just take out that pesky extra increment …

if (frameScore == 10)
 score += frameScore + itsThrows[ball];

54
www.EBooksWorld.ir

The Bowling Game

RCM: Uh . . . It still fails . . . Could it be that the score method is wrong? I’ll test that by changing the
test case to use scoreForFrame(2).

public void testSimpleFrameAfterSpare()
{
 g.add(3);
 g.add(7);
 g.add(3);
 g.add(2);
 assertEquals(13, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
}

RCM: Hmmmm . . . That passes. The score method must be messed up. Let’s look at it.

public int score()
{
 return itsScore;
}

public void add(int pins)
{
 itsThrows[itsCurrentThrow++]=pins;
 itsScore += pins;
}

RCM: Yeah, that’s wrong. The score method is just returning the sum of the pins, not the proper score.
What we need score to do is call scoreForFrame() with the current frame.

RSK: We don’t know what the current frame is. Let’s add that message to each of our current tests, one at
a time, of course.

RCM: Right.

//TestGame.java--
 public void testOneThrow()
 {
 g.add(5);
 assertEquals(5, g.score());
 assertEquals(1, g.getCurrentFrame());
 }

55
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

//Game.java----------------------------------
 public int getCurrentFrame()
 {
 return 1;
 }

RCM: OK, that works. But it’s stupid. Let’s do the next test case.

public void testTwoThrowsNoMark()
{
 g.add(5);
 g.add(4);
 assertEquals(9, g.score());
 assertEquals(1, g.getCurrentFrame());
}

RCM: That one’s uninteresting, let’s try the next.

public void testFourThrowsNoMark()
{
 g.add(5);
 g.add(4);
 g.add(7);
 g.add(2);
 assertEquals(18, g.score());
 assertEquals(9, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
 assertEquals(2, g.getCurrentFrame());
}

RCM: This one fails. Now let’s make it pass.

RSK: I think the algorithm is trivial. Just divide the number of throws by two, since there are two throws
per frame. Unless we have a strike … but we don’t have strikes yet, so let’s ignore them here too.

RCM: (flails around adding and subtracting 1 until it works)2

public int getCurrentFrame()
{
 return 1 + (itsCurrentThrow-1)/2;
}

RCM: That isn’t very satisfying.

RSK: What if we don’t calculate it each time? What if we adjust a currentFrame member variable after
each throw?

RCM: OK, let’s try that.

//Game.java----------------------------------
 public int getCurrentFrame()
 {
 return itsCurrentFrame;
 }

2. Dave Thomas and Andy Hunt call this “programming by coincidence.”

56
www.EBooksWorld.ir

The Bowling Game

 public void add(int pins)
 {
 itsThrows[itsCurrentThrow++]=pins;
 itsScore += pins;
 if (firstThrow == true)
 {
 firstThrow = false;
 itsCurrentFrame++;
 }
 else
 {
 firstThrow=true;;
 }
 }

 private int itsCurrentFrame = 0;
 private boolean firstThrow = true;

RCM: OK, this works. But it also implies that the current frame is the frame of the last ball thrown, not the
frame that the next ball will be thrown into. As long as we remember that, we’ll be fine.

RSK: I don’t have that good of a memory, so let’s make it more readable. But before we go screwing
around with it some more, let’s pull that code out of add() and put it in a private member function
called adjustCurrentFrame() or something.

RCM: OK, that sounds good.

public void add(int pins)
{
 itsThrows[itsCurrentThrow++]=pins;
 itsScore += pins;
 adjustCurrentFrame();
}

private void adjustCurrentFrame()
{
 if (firstThrow == true)
 {
 firstThrow = false;
 itsCurrentFrame++;
 }
 else
 {
 firstThrow=true;;
 }
}

RCM: Now let’s change the variable and function names to be more clear. What should we call
itsCurrentFrame?

RSK: I kind of like that name. I don’t think we’re incrementing it in the right place, though. The current
frame, to me, is the frame number that I’m throwing in. So it should get incremented right after the
last throw in a frame.

RCM: I agree. Let’s change the test cases to reflect that, then we’ll fix adjustCurrentFrame.

57
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

//TestGame.java--
 public void testTwoThrowsNoMark()
 {
 g.add(5);
 g.add(4);
 assertEquals(9, g.score());
 assertEquals(2, g.getCurrentFrame());
 }

 public void testFourThrowsNoMark()
 {
 g.add(5);
 g.add(4);
 g.add(7);
 g.add(2);
 assertEquals(18, g.score());
 assertEquals(9, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
 assertEquals(3, g.getCurrentFrame());
 }

//Game.java--
 private void adjustCurrentFrame()
 {
 if (firstThrow == true)
 {
 firstThrow = false;
 }
 else
 {
 firstThrow=true;
 itsCurrentFrame++;
 }
 }

 private int itsCurrentFrame = 1;
}

RCM: OK, that’s working. Now let’s test getCurrentFrame in the two spare cases.

public void testSimpleSpare()
{
 g.add(3);
 g.add(7);
 g.add(3);
 assertEquals(13, g.scoreForFrame(1));
 assertEquals(2, g.getCurrentFrame());
}

public void testSimpleFrameAfterSpare()
{
 g.add(3);
 g.add(7);
 g.add(3);
 g.add(2);

58
www.EBooksWorld.ir

The Bowling Game

 assertEquals(13, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
 assertEquals(3, g.getCurrentFrame());
}

RCM: This works. Now, back to the original problem. We need score to work. We can now write score
to call scoreForFrame(getCurrentFrame()-1).

public void testSimpleFrameAfterSpare()
{
 g.add(3);
 g.add(7);
 g.add(3);
 g.add(2);
 assertEquals(13, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
 assertEquals(18, g.score());
 assertEquals(3, g.getCurrentFrame());
}

//Game.java----------------------------------
 public int score()
 {
 return scoreForFrame(getCurrentFrame()-1);
 }

RCM: This fails the TestOneThrow test case. Let’s look at it.

public void testOneThrow()
{
 g.add(5);
 assertEquals(5, g.score());
 assertEquals(1, g.getCurrentFrame());
}

RCM: With only one throw, the first frame is incomplete. The score method is calling scoreForFrame(0).
This is yucky.

RSK: Maybe, maybe not. Who are we writing this program for, and who is going to be calling score()?
Is it reasonable to assume that it won’t get called on an incomplete frame?

RCM: Yeah, but it bothers me. To get around this, we have take the score out of the testOneThrow test
case. Is that what we want to do?

RSK: We could. We could even eliminate the entire testOneThrow test case. It was used to ramp us up
to the test cases of interest. Does it really serve a useful purpose now? We still have coverage in all
of the other test cases.

RCM: Yeah, I see your point. OK, out it goes. (edits code, runs test, gets green bar) Ahhh, that’s better.

Now, we’d better work on the strike test case. After all, we want to see all those Frame objects built
into a linked list, don’t we? (snicker)

public void testSimpleStrike()
{
 g.add(10);

59
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 g.add(3);
 g.add(6);
 assertEquals(19, g.scoreForFrame(1));
 assertEquals(28, g.score());
 assertEquals(3, g.getCurrentFrame());
}

RCM: OK, this compiles and fails as predicted. Now we need to make it pass.

//Game.java----------------------------------
public class Game
{
 public void add(int pins)
 {
 itsThrows[itsCurrentThrow++]=pins;
 itsScore += pins;
 adjustCurrentFrame(pins);
 }

 private void adjustCurrentFrame(int pins)
 {
 if (firstThrow == true)
 {
 if(pins == 10) // strike
 itsCurrentFrame++;
 else
 firstThrow = false;
 }
 else
 {
 firstThrow=true;
 itsCurrentFrame++;
 }
 }

 public int scoreForFrame(int theFrame)
 {
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)

60
www.EBooksWorld.ir

The Bowling Game

 {
 int firstThrow = itsThrows[ball++];
 if (firstThrow == 10)
 {
 score += 10 + itsThrows[ball] + itsThrows[ball+1];
 }
 else
 {
 int secondThrow = itsThrows[ball++];

 int frameScore = firstThrow + secondThrow;
 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + itsThrows[ball];
 else
 score += frameScore;
 }

 }

 return score;
 }
 private int itsScore = 0;
 private int[] itsThrows = new int[21];
 private int itsCurrentThrow = 0;
 private int itsCurrentFrame = 1;
 private boolean firstThrow = true;
}

RCM: OK, that wasn’t too hard. Let’s see if it can score a perfect game.

public void testPerfectGame()
{
 for (int i=0; i<12; i++)
 {
 g.add(10);
 }
 assertEquals(300, g.score());
 assertEquals(10, g.getCurrentFrame());
}

61
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

RCM: Urg, it’s saying the score is 330. Why would that be?

RSK: Because the current frame is getting incremented all the way to 12.

RCM: Oh! We need to limit it to 10.

private void adjustCurrentFrame(int pins)
{
 if (firstThrow == true)
 {
 if(pins == 10) // strike
 itsCurrentFrame++;
 else
 firstThrow = false;
 }
 else
 {
 firstThrow=true;
 itsCurrentFrame++;
 }
 itsCurrentFrame = Math.min(10, itsCurrentFrame);
}

RCM: Damn, now it’s saying that the score is 270. What’s going on?

RSK: Bob, the score function is subtracting one from getCurrentFrame, so it’s giving you the score
for frame 9, not 10.

RCM: What? You mean I should limit the current frame to 11 not 10? I’ll try it.

itsCurrentFrame = Math.min(11, itsCurrentFrame);

RCM: OK, so now it gets the score correct but fails because the current frame is 11 and not 10. Ick! This
current frame thing is a pain in the butt. We want the current frame to be the frame the player is
throwing into, but what does that mean at the end of the game?

RSK: Maybe we should go back to the idea that the current frame is the frame of the last ball thrown.

RCM: Or maybe we need to come up with the concept of the last completed frame? After all, the score of
the game at any point in time is the score in the last completed frame.

RSK: A completed frame is a frame that you can write the score into, right?

RCM: Yes, a frame with a spare in it completes after the next ball. A frame with a strike in it completes
after the next two balls. A frame with no mark completes after the second ball in the frame.

Wait a minute . . . We are trying to get the score() method to work, right? All we need to do is
force score() to call scoreForFrame(10) if the game is complete.

RSK: How do we know if the game is complete?

RCM: If adjustCurrentFrame ever tries to increment itsCurrentFrame past the tenth frame, then
the game is complete.

RSK: Wait. All you are saying is that if getCurrentFrame returns 11, the game is complete. That’s the
way the code works now!

RCM: Hmm. You mean we should change the test case to match the code?

62
www.EBooksWorld.ir

The Bowling Game

public void testPerfectGame()
{
 for (int i=0; i<12; i++)
 {
 g.add(10);
 }
 assertEquals(300, g.score());
 assertEquals(11, g.getCurrentFrame());
}

RCM: Well, that works. I suppose it’s no worse than getMonth returning 0 for January. But I still feel
uneasy about it.

RSK: Maybe something will occur to us later. Right now, I think I see a bug. May I?” (grabs keyboard)

public void testEndOfArray()
{
 for (int i=0; i<9; i++)
 {
 g.add(0);
 g.add(0);
 }
 g.add(2);
 g.add(8); // 10th frame spare
 g.add(10); // Strike in last position of array.
 assertEquals(20, g.score());
}

RSK: Hmm. That doesn’t fail. I thought since the 21st position of the array was a strike, the scorer would
try to add the 22nd and 23rd positions to the score. But I guess not.

RCM: Hmm, you are still thinking about that scorer object aren’t you. Anyway, I see what you were get-
ting at, but since score never calls scoreForFrame with a number larger than 10, the last strike is
not actually counted as a strike. It’s just counted as a 10 to complete the last spare. We never walk
beyond the end of the array.

RSK: OK, let’s pump our original score card into the program.

public void testSampleGame()
{
 g.add(1);
 g.add(4);
 g.add(4);
 g.add(5);
 g.add(6);
 g.add(4);
 g.add(5);
 g.add(5);
 g.add(10);
 g.add(0);
 g.add(1);
 g.add(7);
 g.add(3);
 g.add(6);
 g.add(4);
 g.add(10);

63
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 g.add(2);
 g.add(8);
 g.add(6);
 assertEquals(133, g.score());
}

RSK: Well, that works. Are there any other test cases that you can think of?

RCM: Yeah, let’s test a few more boundary conditions— how about the poor schmuck who throws 11
strikes and then a final 9?

public void testHeartBreak()
{
 for (int i=0; i<11; i++)
 g.add(10);
 g.add(9);
 assertEquals(299, g.score());
}

RCM: That works. OK, how about a tenth frame spare?

public void testTenthFrameSpare()
{
 for (int i=0; i<9; i++)
 g.add(10);
 g.add(9);
 g.add(1);
 g.add(1);
 assertEquals(270, g.score());
}

RCM: (staring happily at the green bar) That works too. I can’t think of any more, can you.

RSK: No, I think we’ve covered them all. Besides, I really want to refactor this mess. I still see the
scorer object in there somewhere.

RCM: OK, well, the scoreForFrame function is pretty messy. Let’s consider it.

public int scoreForFrame(int theFrame)
{
 int ball = 0;
 int score=0;

64
www.EBooksWorld.ir

The Bowling Game

 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 int firstThrow = itsThrows[ball++];
 if (firstThrow == 10)
 {
 score += 10 + itsThrows[ball] + itsThrows[ball+1];
 }
 else
 {
 int secondThrow = itsThrows[ball++];

 int frameScore = firstThrow + secondThrow;
 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + itsThrows[ball];
 else
 score += frameScore;
 }

 }

 return score;
}

RCM: I’d really like to extract the body of that else clause into a separate function named
handleSecondThrow, but I can’t because it uses ball, firstThrow, and secondThrow local
variables.

RSK: We could turn those locals into member variables.

RCM: Yeah, that kind of reenforces your notion that we’ll be able to pull the scoring out into its own
scorer object. OK, let’s give that a try.

RSK: (grabs keyboard)

private void adjustCurrentFrame(int pins)
{
 if (firstThrowInFrame == true)
 {
 if(pins == 10) // strike
 itsCurrentFrame++;
 else
 firstThrowInFrame = false;
 }
 else
 {
 firstThrowInFrame=true;
 itsCurrentFrame++;
 }
 itsCurrentFrame = Math.min(11, itsCurrentFrame);
}

65
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

public int scoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 firstThrow = itsThrows[ball++];
 if (firstThrow == 10)
 {
 score += 10 + itsThrows[ball] + itsThrows[ball+1];
 }
 else
 {
 secondThrow = itsThrows[ball++];

 int frameScore = firstThrow + secondThrow;
 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + itsThrows[ball];
 else
 score += frameScore;
 }

 }
 return score;
}
private int ball;
private int firstThrow;
private int secondThrow;

private int itsScore = 0;
private int[] itsThrows = new int[21];
private int itsCurrentThrow = 0;
private int itsCurrentFrame = 1;
private boolean firstThrowInFrame = true;

RSK: I hadn’t expected the name collision. We already had an instance variable named firstThrow. But
it is better named firstThrowInFrame. Anyway, this works now. So we can pull the else clause
out into its own function.

public int scoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 firstThrow = itsThrows[ball++];
 if (firstThrow == 10)
 {
 score += 10 + itsThrows[ball] + itsThrows[ball+1];
 }

66
www.EBooksWorld.ir

The Bowling Game

 else
 {
 score += handleSecondThrow();
 }
 }

 return score;
}

private int handleSecondThrow()
{
 int score = 0;
 secondThrow = itsThrows[ball++];

 int frameScore = firstThrow + secondThrow;
 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + itsThrows[ball];
 else
 score += frameScore;
 return score;
}

RCM: Look at the structure of scoreForFrame! In pseudocode it looks something like this:

if strike
 score += 10 + nextTwoBalls();
else
 handleSecondThrow.

RCM: What if we changed it to

if strike
 score += 10 + nextTwoBalls();
else if spare
 score += 10 + nextBall();
else
 score += twoBallsInFrame()

RSK: Geez! That’s pretty much the rules for scoring bowling isn’t it? OK, let’s see if we can get that
structure in the real function. First, let’s change the way the ball variable is being incremented, so
that the three cases manipulate it independently.

public int scoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 firstThrow = itsThrows[ball];
 if (firstThrow == 10)

67
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 {
 ball++;
 score += 10 + itsThrows[ball] + itsThrows[ball+1];
 }
 else
 {
 score += handleSecondThrow();
 }
 }

 return score;
}

private int handleSecondThrow()
{
 int score = 0;
 secondThrow = itsThrows[ball+1];

 int frameScore = firstThrow + secondThrow;
 // spare needs next frames first throw
 if (frameScore == 10)
 {
 ball+=2;
 score += frameScore + itsThrows[ball];
 }
 else
 {
 ball+=2;
 score += frameScore;
 }
 return score;
}

RCM: (grabs keyboard) OK, now let’s get rid of the firstThrow and secondThrow variables and
replace them with appropriate functions.

public int scoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 firstThrow = itsThrows[ball];
 if (strike())
 {
 ball++;
 score += 10 + nextTwoBalls();
 }
 else
 {
 score += handleSecondThrow();
 }
 }

68
www.EBooksWorld.ir

The Bowling Game

 return score;
}

private boolean strike()
{
 return itsThrows[ball] == 10;
}
private int nextTwoBalls()
{
 return itsThrows[ball] + itsThrows[ball+1];
}

RCM: That step works, let’s keep going.

private int handleSecondThrow()
{
 int score = 0;
 secondThrow = itsThrows[ball+1];

 int frameScore = firstThrow + secondThrow;
 // spare needs next frames first throw
 if (spare())
 {
 ball+=2;
 score += 10 + nextBall();
 }
 else
 {
 ball+=2;
 score += frameScore;
 }
 return score;
}

private boolean spare()
{
 return (itsThrows[ball] + itsThrows[ball+1]) == 10;
}

private int nextBall()
{
 return itsThrows[ball];
}

RCM: OK, that works too. Now let’s deal with frameScore.

private int handleSecondThrow()
{
 int score = 0;
 secondThrow = itsThrows[ball+1];

 int frameScore = firstThrow + secondThrow;
 // spare needs next frames first throw
 if (spare())

69
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 {
 ball+=2;
 score += 10 + nextBall();
 }
 else
 {
 score += twoBallsInFrame();
 ball+=2;
 }
 return score;
}

private int twoBallsInFrame()
{
 return itsThrows[ball] + itsThrows[ball+1];
}

RSK: Bob, you aren’t incrementing ball in a consistent manner. In the spare and strike case, you incre-
ment before you calculate the score. In the twoBallsInFrame case you increment after you calcu-
late the score. And the code depends on this order! What’s up?

RCM: Sorry, I should have explained. I’m planning on moving the increments into strike, spare, and
twoBallsInFrame. That way, they’ll disappear from the scoreForFrame function, and the func-
tion will look just like our pseudocode.

RSK: OK, I’ll trust you for a few more steps, but remember, I’m watching.

RCM: OK, now since nobody uses firstThrow, secondThrow, and frameScore anymore, we can get
rid of them.

public int scoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 if (strike())
 {
 ball++;
 score += 10 + nextTwoBalls();
 }
 else
 {
 score += handleSecondThrow();
 }
 }

 return score;
}

private int handleSecondThrow()
{
 int score = 0;
 // spare needs next frames first throw

70
www.EBooksWorld.ir

The Bowling Game

 if (spare())
 {
 ball+=2;
 score += 10 + nextBall();
 }
 else
 {
 score += twoBallsInFrame();
 ball+=2;
 }
 return score;
}

RCM: (The sparkle in his eyes is a reflection of the green bar.) Now, since the only variable that couples
the three cases is ball, and since ball is dealt with independently in each case, we can merge the
three cases together.

public int scoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 if (strike())
 {
 ball++;
 score += 10 + nextTwoBalls();
 }
 else if (spare())
 {
 ball+=2;
 score += 10 + nextBall();
 }
 else
 {
 score += twoBallsInFrame();
 ball+=2;
 }
 }
 return score;
}

RSK: OK, now we can make the increments consistent and rename the functions to be more explicit.
(grabs keyboard)

public int scoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)

71
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 {
 if (strike())
 {
 score += 10 + nextTwoBallsForStrike();
 ball++;
 }
 else if (spare())
 {
 score += 10 + nextBallForSpare();
 ball+=2;
 }
 else
 {
 score += twoBallsInFrame();
 ball+=2;
 }
 }

 return score;
}

private int nextTwoBallsForStrike()
{
 return itsThrows[ball+1] + itsThrows[ball+2];
}

private int nextBallForSpare()
{
 return itsThrows[ball+2];
}

RCM: Look at that scoreForFrame function! That’s the rules of bowling stated about as succinctly as
possible.

RSK: But, Bob, what happened to the linked list of Frame objects? (snicker, snicker)

RCM: (sigh) We were bedevilled by the daemons of diagrammatic overdesign. My God, three little boxes
drawn on the back of a napkin, Game, Frame, and Throw, and it was still too complicated and just
plain wrong.

RSK: We made a mistake starting with the Throw class. We should have started with the Game class first!

RCM: Indeed! So, next time let’s try starting at the highest level and work down.

RSK: (gasp) Top-down design!??!?!?

RCM: Correction, top-down, test-first design. Frankly, I don’t know if this is a good rule or not. It’s just
what would have helped us in this case. So next time, I’m going to try it and see what happens.

RSK: Yeah, OK. Anyway, we still have some refactoring to do. The ball variable is just a private iterator
for scoreForFrame and its minions. They should all be moved into a different object.

RCM: Oh, yes, your Scorer object. You were right after all. Let’s do it.

RSK: (grabs keyboard and takes several small steps punctuated by tests to create . . .)

//Game.java----------------------------------
public class Game

72
www.EBooksWorld.ir

The Bowling Game

{
 public int score()
 {
 return scoreForFrame(getCurrentFrame()-1);
 }

 public int getCurrentFrame()
 {
 return itsCurrentFrame;
 }

 public void add(int pins)
 {
 itsScorer.addThrow(pins);
 itsScore += pins;
 adjustCurrentFrame(pins);
 }

 private void adjustCurrentFrame(int pins)
 {
 if (firstThrowInFrame == true)
 {
 if(pins == 10) // strike
 itsCurrentFrame++;
 else
 firstThrowInFrame = false;
 }
 else
 {
 firstThrowInFrame=true;
 itsCurrentFrame++;
 }
 itsCurrentFrame = Math.min(11, itsCurrentFrame);
}

public int scoreForFrame(int theFrame)
{
 return itsScorer.scoreForFrame(theFrame);
}

private int itsScore = 0;
private int itsCurrentFrame = 1;
private boolean firstThrowInFrame = true;
private Scorer itsScorer = new Scorer();
}

//Scorer.java-----------------------------------
public class Scorer
{
 public void addThrow(int pins)
 {
 itsThrows[itsCurrentThrow++] = pins;
 }

 public int scoreForFrame(int theFrame)

73
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 {
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 if (strike())
 {
 score += 10 + nextTwoBallsForStrike();
 ball++;
 }
 else if (spare())
 {
 score += 10 + nextBallForSpare();
 ball+=2;
 }
 else
 {
 score += twoBallsInFrame();
 ball+=2;
 }
 }
 return score;
 }

 private boolean strike()
 {
 return itsThrows[ball] == 10;
 }

 private boolean spare()
 {
 return (itsThrows[ball] + itsThrows[ball+1]) == 10;
 }

 private int nextTwoBallsForStrike()
 {
 return itsThrows[ball+1] + itsThrows[ball+2];
 }

 private int nextBallForSpare()
 {
 return itsThrows[ball+2];
 }

 private int twoBallsInFrame()
 {
 return itsThrows[ball] + itsThrows[ball+1];
 }

 private int ball;
 private int[] itsThrows = new int[21];
 private int itsCurrentThrow = 0;
}

74
www.EBooksWorld.ir

The Bowling Game

RSK: That’s much better. Now, the Game just keeps track of frames, and the Scorer just calculates the
score. The Single Responsibility Principle rocks!

RCM: Whatever. But it is better. Did you notice that the itsScore variable is not being used anymore?

RSK: Ha! You’re right. Let’s kill it. (gleefully starts erasing things)

public void add(int pins)
{
 itsScorer.addThrow(pins);
 adjustCurrentFrame(pins);
}

RSK: Not bad. Now, should we clean up the adjustCurrentFrame stuff?

RCM: OK, let’s look at it.

private void adjustCurrentFrame(int pins)
{
 if (firstThrowInFrame == true)
 {
 if(pins == 10) // strike
 itsCurrentFrame++;
 else
 firstThrowInFrame = false;
 }
 else
 {
 firstThrowInFrame=true;
 itsCurrentFrame++;
 }
 itsCurrentFrame = Math.min(11, itsCurrentFrame);
}

RCM: OK, first let’s extract the increments into a single function that also restricts the frame to 11. (Brrrr.
I still don’t like that 11.)

RSK: Bob, 11 means end of game.

RCM: Yeah. Brrrr. (grabs keyboard, makes a couple of changes punctuated by tests)

private void adjustCurrentFrame(int pins)
{
 if (firstThrowInFrame == true)
 {
 if(pins == 10) // strike
 advanceFrame();
 else
 firstThrowInFrame = false;
 }
 else
 {
 firstThrowInFrame=true;
 advanceFrame();
 }
}

75
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

private void advanceFrame()
{
 itsCurrentFrame = Math.min(11, itsCurrentFrame + 1);
}

RCM: OK, that’s a little better. Now let’s break out the strike case into its own function. (Takes a few
small steps and runs tests between each.)

private void adjustCurrentFrame(int pins)
{
 if (firstThrowInFrame == true)
 {
 if (adjustFrameForStrike(pins) == false)
 firstThrowInFrame = false;
 }
 else
 {
 firstThrowInFrame=true;
 advanceFrame();
 }
}

private boolean adjustFrameForStrike(int pins)
{
 if (pins == 10)
 {
 advanceFrame();
 return true;
 }
 return false;
}

RCM: That’s pretty good. Now, about that 11.

RSK: You really hate that don’t you.

RCM: Yeah, look at the score() function,

public int score()
{
 return scoreForFrame(getCurrentFrame()-1);
}

RCM: That -1 is odd. It’s the only place we truly use getCurrentFrame, and yet we need to adjust what
it returns.

RSK: Damn, you’re right. How many times have we reversed ourselves on this?

RCM: Too many. But there it is. The code wants itsCurrentFrame to represent the frame of the last
thrown ball, not the frame we are about to throw into.

RSK: Sheesh, that’s going to break lots of test cases.

RCM: Actually, I think we should remove getCurrentFrame from all the test cases, and remove the
getCurrentFrame function itself. Nobody really uses it.

RSK: OK, I get your point. I’ll do it. It’ll be like putting a lame horse out of its misery. (grabs keyboard)

76
www.EBooksWorld.ir

The Bowling Game

//Game.java----------------------------------
 public int score()
 {
 return scoreForFrame(itsCurrentFrame);
 }
 private void advanceFrame()
 {
 itsCurrentFrame = Math.min(10, itsCurrentFrame + 1);
 }

RCM: Oh, for crying out loud. You mean to tell me that we were fretting over that. All we did was change
the limit from 11 to 10 and remove the -1. Cripes!

RSK: Yeah, Uncle Bob, it really wasn’t worth all the angst we gave it.

RCM: I hate the side effect in adjustFrameForStrike(). I want to get rid of it. What do you think of
this?

private void adjustCurrentFrame(int pins)
{
 if ((firstThrowInFrame && pins == 10) ||
 (!firstThrowInFrame))
 advanceFrame();
 else
 firstThrowInFrame = false;
}

RSK: I like the idea, and it passes the tests, but I hate the long if statement. How about this?

private void adjustCurrentFrame(int pins)
{
 if (strike(pins) || !firstThrowInFrame)
 advanceFrame();
 else
 firstThrowInFrame = false;
}

private boolean strike(int pins)
{
 return (firstThrowInFrame && pins == 10);
}

RCM: Yeah, that’s pretty. We could even go one step further.

private void adjustCurrentFrame(int pins)
{
 if (lastBallInFrame(pins))
 advanceFrame();
 else
 firstThrowInFrame = false;
}

private boolean lastBallInFrame(int pins)
{
 return strike(pins) || !firstThrowInFrame;
}

77
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

RSK: Nice!

RCM: OK, looks like we are done. Let’s just read through the whole program and see if it’s as simple and
communicative as it can be.

//Game.java----------------------------------
public class Game
{
 public int score()
 {
 return scoreForFrame(itsCurrentFrame);
 }

public void add(int pins)
{
 itsScorer.addThrow(pins);
 adjustCurrentFrame(pins);
}

private void adjustCurrentFrame(int pins)
{
 if (lastBallInFrame(pins))
 advanceFrame();
 else
 firstThrowInFrame = false;
}

private boolean lastBallInFrame(int pins)
{
 return strike(pins) || !firstThrowInFrame;
}

private boolean strike(int pins)
{
 return (firstThrowInFrame && pins == 10);
}

private void advanceFrame()
{
 itsCurrentFrame = Math.min(10, itsCurrentFrame + 1);
}

public int scoreForFrame(int theFrame)
{
 return itsScorer.scoreForFrame(theFrame);
}

private int itsCurrentFrame = 0;
private boolean firstThrowInFrame = true;
private Scorer itsScorer = new Scorer();
}

//Scorer.java----------------------------------
public class Scorer
{
 public void addThrow(int pins)

78
www.EBooksWorld.ir

The Bowling Game

 {
 itsThrows[itsCurrentThrow++] = pins;
 }

public int scoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 if (strike())
 {
 score += 10 + nextTwoBallsForStrike();
 ball++;
 }
 else if (spare())
 {
 score += 10 + nextBallForSpare();
 ball+=2;
 }
 else
 {
 score += twoBallsInFrame();
 ball+=2;
 }
 }
 return score;
}

private boolean strike()
{
 return itsThrows[ball] == 10;
}

private boolean spare()
{
 return (itsThrows[ball] + itsThrows[ball+1]) == 10;
}

private int nextTwoBallsForStrike()
{
 return itsThrows[ball+1] + itsThrows[ball+2];
}

private int nextBallForSpare()
{
 return itsThrows[ball+2];
}

private int twoBallsInFrame()
{
 return itsThrows[ball] + itsThrows[ball+1];
}

79
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

private int ball;
private int[] itsThrows = new int[21];
private int itsCurrentThrow = 0;
}

RCM: OK, that looks pretty good. I can’t think of anything else to do.

RSK: Yeah, it’s pretty. Let’s look over the tests for good measure.

//TestGame.java--
import junit.framework.*;

public class TestGame extends TestCase
{
 public TestGame(String name)
 {
 super(name);
 }

 private Game g;

 public void setUp()
 {
 g = new Game();
 }

 public void testTwoThrowsNoMark()
 {
 g.add(5);
 g.add(4);
 assertEquals(9, g.score());
 }

 public void testFourThrowsNoMark()
 {
 g.add(5);
 g.add(4);
 g.add(7);
 g.add(2);
 assertEquals(18, g.score());
 assertEquals(9, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
 }

 public void testSimpleSpare()
 {
 g.add(3);
 g.add(7);
 g.add(3);
 assertEquals(13, g.scoreForFrame(1));
 }

 public void testSimpleFrameAfterSpare()
 {
 g.add(3);
 g.add(7);

80
www.EBooksWorld.ir

The Bowling Game

 g.add(3);
 g.add(2);
 assertEquals(13, g.scoreForFrame(1));
 assertEquals(18, g.scoreForFrame(2));
 assertEquals(18, g.score());
 }

 public void testSimpleStrike()
 {
 g.add(10);
 g.add(3);
 g.add(6);
 assertEquals(19, g.scoreForFrame(1));
 assertEquals(28, g.score());
 }

 public void testPerfectGame()
 {
 for (int i=0; i<12; i++)
 {
 g.add(10);
 }
 assertEquals(300, g.score());
}

public void testEndOfArray()
{
 for (int i=0; i<9; i++)
 {
 g.add(0);
 g.add(0);
 }
 g.add(2);
 g.add(8); // 10th frame spare
 g.add(10); // Strike in last position of array.
 assertEquals(20, g.score());
}

 public void testSampleGame()
 {
 g.add(1);
 g.add(4);
 g.add(4);
 g.add(5);
 g.add(6);
 g.add(4);
 g.add(5);
 g.add(5);
 g.add(10);
 g.add(0);
 g.add(1);
 g.add(7);
 g.add(3);
 g.add(6);
 g.add(4);

81
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

 g.add(10);
 g.add(2);
 g.add(8);
 g.add(6);
 assertEquals(133, g.score());
 }

 public void testHeartBreak()
 {
 for (int i=0; i<11; i++)
 g.add(10);
 g.add(9);
 assertEquals(299, g.score());
 }

 public void testTenthFrameSpare()
 {
 for (int i=0; i<9; i++)
 g.add(10);
 g.add(9);
 g.add(1);
 g.add(1);
 assertEquals(270, g.score());
 }
}

RSK: That pretty much covers it. Can you think of any more meaningful test cases?

RCM: No, I think that’s the set. There aren’t any there that I’d be comfortable removing at this point.

RSK: Then we’re done.

RCM: I’d say so. Thanks a lot for your help.

RSK: No problem, it was fun.

Conclusion
After writing this chapter, I published it on the Object Mentor Web site.3 Many people read it and gave their com-
ments. Some folks were disturbed that there was almost no object-oriented design involved. I find this response
interesting. Must we have object-oriented design in every application and every program? Here is a case where the
program simply didn’t need much of it. The Scorer class was really the only concession to OO, and even that was
more simple partitioning than true OOD.

Other folks thought that there really should be a Frame class. One person went so far as to create a version
of the program that contained a Frame class. It was much larger and more complex than what you see above.

Some folks felt that we weren’t fair to UML. After all, we didn’t do a complete design before we began. The
funny little UML diagram on the back of the napkin (Figure 6-2) was not a complete design. It did not include
sequence diagrams. I find this argument rather odd. It doesn’t seem likely to me that adding sequence diagrams to
Figure 6-2 would have caused us to abandon the Throw and Frame classes. Indeed, I think it would have
entrenched us in our view that these classes were necessary.

Am I trying to say that diagrams are inappropriate? Of course not. Well, actually, yes, in a way I am. For this
program, the diagrams didn’t help at all. Indeed, they were a distraction. If we had followed them, we would have
wound up with a program that was much more complex than necessary. You might contend that we would also

3. http://www.objectmentor.com

82
www.EBooksWorld.ir

Conclusion

have wound up with a program that was more maintainable, but I disagree. The program we just went through is
easy to understand and therefore easy to maintain. There are no mismanaged dependencies within it that make it
rigid or fragile.

So, yes, diagrams can be inappropriate at times. When are they inappropriate? When you create them with-
out code to validate them, and then intend to follow them. There is nothing wrong with drawing a diagram to
explore an idea. However, having produced a diagram, you should not assume that it is the best design for the task.
You may find that the best design will evolve as you take tiny little steps, writing tests first.

An Overview of the Rules of Bowling
Bowling is a game that is played by throwing a cantaloupe-sized ball down a narrow alley toward ten
wooden pins. The object is to knock down as many pins as possible per throw.

The game is played in ten frames. At the beginning of each frame, all ten pins are set up. The player
then gets two tries to knock them all down.

If the player knocks all the pins down on the first try, it is called a “strike,” and the frame ends.

If the player fails to knock down all the pins with his first ball, but succeeds with the second ball, it is
called a “spare.”

After the second ball of the frame, the frame ends even if there are still pins standing.

A strike frame is scored by adding ten, plus the number of pins knocked down by the next two balls, to
the score of the previous frame.

A spare frame is scored by adding ten, plus the number of pins knocked down by the next ball, to the
score of the previous frame.

Otherwise, a frame is scored by adding the number of pins knocked down by the two balls in the frame
to the score of the previous frame.

If a strike is thrown in the tenth frame, then the player may throw two more balls to complete the score
of the strike.

Likewise, if a spare is thrown in the tenth frame, the player may throw one more ball to complete the
score of the spare.

Thus, the tenth frame may have three balls instead of two.

The score card above shows a typical, if rather poor, game.

In the first frame, the player knocked down 1 pin with his first ball and four more with his second.
Thus, his score for the frame is a five.

In the second frame, the player knocked down four pins with his first ball and five more with his sec-
ond. That makes nine pins total, added to the previous frame makes fourteen.

In the third frame, the player knocked down six pins with his first ball and knocked down the rest with
his second for a spare. No score can be calculated for this frame until the next ball is rolled.

5

41

14

54

29

6

49

5

60 61

10

77

7

97

6

117 133

62

83
www.EBooksWorld.ir

Chapter 6 • A Programming Episode

In the fourth frame, the player knocked down five pins with his first ball. This lets us complete the
scoring of the spare in frame three. The score for frame three is ten, plus the score in frame two (14),
plus the first ball of frame four (5), or 29. The final ball of frame four is a spare.

Frame five is a strike. This lets us finish the score of frame four which is 29 + 10 + 10 = 49.

Frame six is dismal. The first ball went in the gutter and failed to knock down any pins. The second
ball knocked down only one pin. The score for the strike in frame five is 49 + 10 + 0 + 1 = 60.

The rest you can probably figure out for yourself.

84
www.EBooksWorld.ir

SECTION 2

Agile Design

If agility is about building software in tiny increments, how can you ever design the software? How can you take
the time to ensure that the software has a good structure that is flexible, maintainable, and reusable? If you build in
tiny increments, aren’t you really setting the stage for lots of scrap and rework in the name of refactoring? Aren’t
you going to miss the big picture?

In an agile team, the big picture evolves along with the software. With each iteration, the team improves the
design of the system so that it is as good as it can be for the system as it is now. The team does not spend very
much time looking ahead to future requirements and needs. Nor do they try to build in today the infrastructure to
support the features they think they’ll need tomorrow. Rather, they focus on the current structure of the system,
making it as good as it can be.

Symptoms of Poor Design

How do we know if the design of the software is good? The first chapter in this section enumerates and describes
symptoms of poor design. The chapter demonstrates how those symptoms accumulate in a software project and
describes how to avoid them.

The symptoms are defined as follows:

1. Rigidity—The design is hard to change.
2. Fragility—The design is easy to break.
3. Immobility—The design is hard to reuse.
4. Viscosity—It is hard to do the right thing.
5. Needless Complexity—Overdesign.
6. Needless Repetition—Mouse abuse.
7. Opacity—Disorganized expression.

These symptoms are similar in nature to code smells,1 but they are at a higher level. They are smells that per-
vade the overall structure of the software rather than a small section of code.

1. [Fowler99].

From Section 2 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

85
www.EBooksWorld.ir

86

Principles

The rest of the chapters in this section describe principles of object-oriented design that help developers eliminate
design smells and build the best designs for the current set of features.

The principles are as follows:

1. SRP—The Single Responsibility Principle
2. OCP—The Open–Closed Principle.
3. LSP—The Liskov Substitution Principle.
4. DIP—The Dependency Inversion Principle.
5. ISP—The Interface Segregation Principle.

These principles are the hard-won product of decades of experience in software engineering. They are not
the product of a single mind, but they represent the integration of the thoughts and writings of a large number of
software developers and researchers. Although they are presented here as principles of object-oriented design, they
are really special cases of long-standing principles of software engineering.

Smells and Principles

A design smell is a symptom, it’s something that can be measured, subjectively if not objectively. Often, the smell
is caused by the violation of one or more of the principles. For example, the smell of Rigidity is often a result of
insufficient attention to The Open–Closed Principle (OCP).

Agile teams apply principles to remove smells. They don’t apply principles when there are no smells. It is a
mistake to unconditionally conform to a principle just because it is a principle. Principles are not a perfume to be
liberally scattered all over the system. Overconformance to the principles leads to the design smell of Needless
Complexity.

Bibliography

1. Martin, Fowler. Refactoring. Addison–Wesley. 1999.

86
www.EBooksWorld.ir

7

What Is Agile Design?

“After reviewing the software development life cycle as I understood it, I concluded that
the only software documentation that actually seems to satisfy the criteria of an

engineering design is the source code listings.”

—Jack Reeves

In 1992, Jack Reeves wrote a seminal article in the C++ Journal entitled “What is Software Design?”1 In this arti-
cle, Reeves argues that the design of a software system is documented primarily by its source code. The diagrams
representing the source code are ancillary to the design and are not the design itself. As it turns out, Jack’s article
was a harbinger of agile development.

In the pages that follow, we will often talk about “The Design.” You should not take that to mean a set of
UML diagrams separate from the code. A set of UML diagrams may represent parts of a design, but it is not the
design. The design of a software project is an abstract concept. It has to do with the overall shape and structure of
the program as well as the detailed shape and structure of each module, class, and method. It can be represented by
many different media, but its final embodiment is source code. In the end, the source code is the design.

What Goes Wrong with Software?
If you are lucky, you start a project with a clear picture of what you want the system to be. The design of the sys-
tem is a vital image in your mind. If you are luckier still, the clarity of that design makes it to the first release.

Then, something goes wrong. The software starts to rot like a piece of bad meat. As time goes by, the rot
spreads and grows. Ugly festering sores and boils accumulate in the code, making it harder and harder to maintain.

1. [Reeves92] This is a great paper. I strongly recommend that you read it. I have included it in this book in Appendix D.

From Chapter 7 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

87
www.EBooksWorld.ir

Chapter 7 • What Is Agile Design?

Eventually, the sheer effort required to make even the simplest of changes becomes so onerous that the developers
and front-line managers cry for a redesign.

Such redesigns rarely succeed. Though the designers start out with good intentions, they find that they are
shooting at a moving target. The old system continues to evolve and change, and the new design must keep up. The
warts and ulcers accumulate in the new design before it ever makes it to its first release.

Design Smells—The Odors of Rotting Software
You know that the software is rotting when it starts to exhibit any of the following odors:

1. Rigidity—The system is hard to change because every change forces many other changes to other parts of the
system.

2. Fragility—Changes cause the system to break in places that have no conceptual relationship to the part that
was changed.

3. Immobility—It is hard to disentangle the system into components that can be reused in other systems.
4. Viscosity—Doing things right is harder than doing things wrong.
5. Needless Complexity—The design contains infrastructure that adds no direct benefit.
6. Needless Repetition—The design contains repeating structures that could be unified under a single abstrac-

tion.
7. Opacity—It is hard to read and understand. It does not express its intent well.

Rigidity. Rigidity is the tendency for software to be difficult to change, even in simple ways. A design is
rigid if a single change causes a cascade of subsequent changes in dependent modules. The more modules that
must be changed, the more rigid the design.

Most developers have faced this situation in one way or another. They are asked to make what appears to be
a simple change. They look the change over and make a reasonable estimate of the work required. But later, as they
work though the change, they find that there are repercussions to the change that they hadn’t anticipated. They find
themselves chasing the change through huge portions of the code, modifying far more modules than they had first
estimated. In the end, the changes take far longer than the initial estimate. When asked why their estimate was so
poor they repeat the traditional software developers’ lament, “It was a lot more complicated than I thought!”

Fragility. Fragility is the tendency of a program to break in many places when a single change is made.
Often, the new problems are in areas that have no conceptual relationship with the area that was changed. Fixing
those problems leads to even more problems, and the development team begins to resemble a dog chasing its tail.

As the fragility of a module increases, the likelihood that a change will introduce unexpected problems
approaches certainty. This seems absurd, but such modules are not at all uncommon. These are the modules that
are constantly in need of repair—the ones that are never off the bug list, the ones that the developers know need to
be redesigned (but nobody wants to face the spectre of redesigning them), the ones that get worse the more you
fix them.

Immobility. A design is immobile when it contains parts that could be useful in other systems, but the
effort and risk involved with separating those parts from the original system are too great. This is an unfortunate,
but very common, occurrence.

Viscosity. Viscosity comes in two forms: viscosity of the software and viscosity of the environment.

When faced with a change, developers usually find more than one way to make that change. Some of the
ways preserve the design; others do not (i.e., they are hacks.) When the design-preserving methods are harder to
employ than the hacks, the viscosity of the design is high. It is easy to do the wrong thing, but hard to do the right
thing. We want to design our software such that the changes that preserve the design are easy to make.

88
www.EBooksWorld.ir

Design Smells—The Odors of Rotting Software

Viscosity of environment comes about when the development environment is slow and inefficient. For exam-
ple, if compile times are very long, developers will be tempted to make changes that don’t force large recompiles,
even though those changes don’t preserve the design. If the source-code control system requires hours to check in
just a few files, then developers will be tempted to make changes that require as few check-ins as possible, regard-
less of whether the design is preserved.

In both cases, a viscous project is a project in which the design of the software is hard to preserve. We want
to create systems and project environments that make it easy to preserve the design.

Needless Complexity. A design contains needless complexity when it contains elements that aren’t cur-
rently useful. This frequently happens when developers anticipate changes to the requirements, and put facilities in
the software to deal with those potential changes. At first, this may seem like a good thing to do. After all, prepar-
ing for future changes should keep our code flexible and prevent nightmarish changes later.

Unfortunately, the effect is often just the opposite. By preparing for too many contingencies, the design
becomes littered with constructs that are never used. Some of those preparations may pay off, but many more do
not. Meanwhile the design carries the weight of these unused design elements. This makes the software complex
and hard to understand.

Needless Repetition. Cut and paste may be useful text-editing operations, but they can be disastrous
code-editing operations. All too often, software systems are built upon dozens or hundreds of repeated code ele-
ments. It happens like this:

Ralph needs to write some code that fravles the arvadent. He looks around in other parts of the code where
he suspects other arvadent fravling has occurred and finds a suitable stretch of code. He cuts and pastes that code
into his module, and he makes the suitable modifications.

Unbeknownst to Ralph, the code he scraped up with his mouse was put there by Todd, who scraped it out of
a module written by Lilly. Lilly was the first to fravle an arvadent, but she realized that fravling an arvadent was
very similar to fravling a garnatosh. She found some code somewhere that fravled a garnatosh, cut and paste it into
her module and modified it as necessary.

When the same code appears over and over again, in slightly different forms, the developers are missing an
abstraction. Finding all the repetition and eliminating it with an appropriate abstraction may not be high on their
priority list, but it would go a long way toward making the system easier to understand and maintain.

When there is redundant code in the system, the job of changing the system can become arduous. Bugs
found in such a repeating unit have to be fixed in every repetition. However, since each repetition is slightly differ-
ent from every other, the fix is not always the same.

Opacity. Opacity is the tendency of a module to be difficult to understand. Code can be written in a clear
and expressive manner, or it can be written in an opaque and convoluted manner. Code that evolves over time tends
to become more and more opaque with age. A constant effort to keep the code clear and expressive is required in
order to keep opacity to a minimum.

When developers first write a module, the code may seem clear to them. That is because they have immersed
themselves within it, and they understand it at an intimate level. Later, after the intimacy has worn off, they may
return to that module and wonder how they could have written anything so awful. To prevent this, developers need
to put themselves in their readers’ shoes and make a concerted effort to refactor their code so that their readers can
understand it. They also need to have their code reviewed by others.

What Stimulates the Software to Rot?

In nonagile environments, designs degrade because requirements change in ways that the initial design did not
anticipate. Often, these changes need to be made quickly, and they may be made by developers who are not

89
www.EBooksWorld.ir

Chapter 7 • What Is Agile Design?

familiar with the original design philosophy. So, though the change to the design works, it somehow violates the
original design. Bit by bit, as the changes continue, these violations accumulate, and the design begins to smell.

However, we cannot blame the drifting of the requirements for the degradation of the design. We, as soft-
ware developers, know full well that requirements change. Indeed, most of us realize that the requirements are the
most volatile elements in the project. If our designs are failing due to the constant rain of changing requirements, it
is our designs and practices that are at fault. We must somehow find a way to make our designs resilient to such
changes and employ practices that protect them from rotting.

Agile Teams Don’t Allow the Software to Rot

An agile team thrives on change. The team invests little up front; therefore, it is not vested in an aging initial
design. Rather, they keep the design of the system as clean and simple as possible, and back it up with lots of unit
tests and acceptance tests. This keeps the design flexible and easy to change. The team takes advantage of that flex-
ibility in order to continuously improve the design so that each iteration ends with a system whose design is as
appropriate as it can be for the requirements in that iteration.

The “Copy” Program
Watching a design rot may help illustrate the above points. Let’s say your boss comes to you early Monday morn-
ing and asks you to write a program that copies characters from the keyboard to the printer. Doing some quick
mental exercises in your head, you come to the conclusion that this will be less than ten lines of code. Design and
coding time should be a lot less than one hour. What with cross-functional group meetings, quality education
meetings, daily group progress meetings, and the three current crises in the field, this program ought to take you
about a week to complete—if you stay after hours. However, you always multiply your estimates by three.

“Three weeks,” you tell your boss. He harumphs and walks away, leaving you to your task.

The Initial Design. You have a bit of time right now before that process review meeting begins, so you
decide to map out a design for the program. Using structured design you come up with the structure chart in
Figure 7-1.

There are three modules, or subprograms, in the application. The Copy module calls the other two. The copy
program fetches characters from the Read Keyboard module and routes them to the Write Printer module.

You look at your design and see that it is good. You smile and then leave your office to go to that review. At
least you’ll be able to get a little sleep there.

On Tuesday, you come in a bit early so that you can finish up the Copy program. Unfortunately, one of the
crises in the field has warmed up over night, and you have to go to the lab and help debug a problem. On your
lunch break, which you finally take at 3 p.m., you manage to type in the code for the Copy program. The result is
Listing 7-1.

Figure 7-1 Copy Program Structure Chart

Copy

Read Keyboard Write Printer

char char

90
www.EBooksWorld.ir

The “Copy” Program

Listing 7-1

The Copy Program

void Copy()
{
 int c;
 while ((c=RdKbd()) != EOF)
 WrtPrt(c);
}

You just manage to save the edit, when you realize that you are already late for a quality meeting. You know
this is an important one; they are going to be talking about the magnitude of zero defects. So you wolf down your
Twinkies and coke and head off to the meeting.

On Wednesday, you come in early again, and this time nothing seems to be amiss. So you pull up the source
code for the Copy program and begin to compile it. Lo and behold, it compiles first time with no errors! It’s a good
thing, too, because your boss calls you into an unscheduled meeting about the need to conserve laser printer toner.

On Thursday, after spending four hours on the phone with a service technician in Rocky Mount, North
Carolina, walking him through the remote debugging and error logging commands in one of the more obscure
components of the system, you grab a Ho Ho and then test your Copy program. It works, first time! Good thing,
too, because your new co-op student has just erased the master source code directory from the server, and you have
to go find the latest backup tapes and restore it. Of course the last full backup was taken three months ago, and you
have ninety-four incremental backups to restore on top of it.

Friday, is completely unbooked. Good thing too, because it takes all day to get the Copy program success-
fully loaded into your source code control system.

Of course the program is a raging success, and gets deployed throughout your company. Your reputation as
an ace programmer is once again confirmed, and you bask in the glory of your achievements. With luck, you might
actually produce thirty lines of code this year!

The Requirements They Are a-Changin’. A few months later, your boss comes to you and says that
sometimes they’d like the Copy program to be able to read from the paper tape reader. You gnash your teeth and
roll your eyes. You wonder why people are always changing the requirements. Your program wasn’t designed for a
paper tape reader! You warn your boss that changes like these are going to destroy the elegance of your design.
Nevertheless, your boss is adamant. He says the users really need to read characters from the paper tape reader
from time to time.

So, you sigh and plan your modifications. You’d like to add a boolean argument to the Copy function. If true,
then you’d read from the paper tape reader; if false, you’d read from the keyboard as before. Unfortunately, there
are so many other programs using the Copy program now, that you can’t change the interface. Changing the inter-
face would cause weeks and weeks of recompiling and retesting. The system test engineers alone would lynch you,
not to mention the seven guys in the configuration control group. And the process police would have a field day
forcing all kinds of code reviews for every module that called Copy!

No, changing the interface is out. But then, how can you let the Copy program know that it must read from
the paper tape reader? You’ll use a global of course! You’ll also use the best and most useful feature of the C suite
of languages, the ?: operator! Listing 7-2 shows the result.

Listing 7-2

First modification of Copy program

bool ptFlag = false;
// remember to reset this flag
void Copy()

91
www.EBooksWorld.ir

Chapter 7 • What Is Agile Design?

{
 int c;
 while ((c=(ptflag ? RdPt() : RdKbd())) != EOF)
 WrtPrt(c);
}

Callers of Copy who want to read from the paper tape reader must first set the ptFlag to true. Then they can
call Copy, and it will happily read from the paper tape reader. Once Copy returns, the caller must reset the ptFlag,
otherwise the next caller may mistakenly read from the paper tape reader rather than the keyboard. To remind the
programmers of their duty to reset this flag, you have added an appropriate comment.

Once again, you release your software to critical acclaim. It is even more successful than before, and hordes
of eager programmers are waiting for an opportunity to use it. Life is good.

Give ’em an inch... Some weeks later, your boss (who is still your boss despite three corporate-wide
reorganizations in as many months) tells you that the customers would sometimes like the Copy program to output
to the paper tape punch.

Customers! They are always ruining your designs. Writing software would be a lot easier if it weren’t for
customers.

You tell your boss that these incessant changes are having a profoundly negative effect upon the elegance of
your design. You warn him that if changes continue at this horrid pace, the software will be impossible to maintain
before year end. Your boss nods knowingly, and then tells you to make the change anyway.

This design change is similar to the one before it. All we need is another global and another ?: operator!
Listing 7-3 shows the result of your endeavors.

Listing 7-3
bool ptFlag = false;
bool punchFlag = false;
// remember to reset these flags
void Copy()
{
 int c;
 while ((c=(ptflag ? RdPt() : RdKbd())) != EOF)
 punchFlag ? WrtPunch(c) : WrtPrt(c);
}

You are especially proud of the fact that you remembered to change the comment. Still, you worry that the
structure of your program is beginning to topple. Any more changes to the input device will certainly force you to
completely restructure the while-loop conditional. Perhaps it’s time to dust off your resume...

Expect Changes. I’ll leave it to you to determine just how much of the above was satirical exaggeration.
The point of the story was to show how the design of a program can rapidly degrade in the presence of change. The
original design of the Copy program was simple and elegant. Yet after only two changes, it has begun to show the
signs of Rigidity, Fragility, Immobility, Complexity, Redundancy, and Opacity. This trend is certainly going to con-
tinue, and the program will become a mess.

We might sit back and blame this on the changes. We might complain that the program was well designed for
the original spec, and that the subsequent changes to the spec caused the design to degrade. However, this ignores
one of the most prominent facts in software development: requirements always change!

Remember, the most volatile things in most software projects are the requirements. The requirements are
continuously in a state of flux. This is a fact that we, as developers, must accept! We live in a world of changing

92
www.EBooksWorld.ir

The “Copy” Program

requirements, and our job is to make sure that our software can survive those changes. If the design of our soft-
ware degrades because the requirements have changed, then we are not being agile.

Agile Design of the Copy Example

An agile development might begin exactly the same way with the code in Listing 7-1.2 When the boss asked the
agile developers to make the program read from the paper tape reader, they would have responded by changing the
design to be resilient to that kind of change. The result might have been something like Listing 7-4.

Listing 7-4

Agile version 2 of Copy

class Reader
{
 public:
 virtual int read() = 0;
};

class KeyboardReader : public Reader
{
 public:
 virtual int read() {return RdKbd();}
};

KeyboardReader GdefaultReader;

void Copy(Reader& reader = GdefaultReader)
{
 int c;
 while ((c=reader.read()) != EOF)
 WrtPrt(c);
}

Instead of trying to patch the design to make the new requirement work, the team siezes the opportunity to
improve the design so that it will be resilient to that kind of change in the future. From now on, whenever the boss
asks for a new kind of input device, the team will be able to respond in a way that does not cause degradation to the
Copy program.

The team has followed the Open–Closed Principle (OCP), which we will be reading about in Chapter 9.
This principle directs us to design our modules so that they can be extended without modification. That’s exactly
what the team has done. Every new input device that the boss asks for can be provided without modifying the
Copy program.

Note, however, that the team did not try to anticipate how the program was going to change when they first
designed the module. Instead, they wrote it in the simplest way they could. It was only when the requirements did
eventually change, that they changed the design of the module to be resilient to that kind of change.

One could argue that they only did half the job. While they were protecting themselves from different input
devices, they could also have protected themselves from different output devices. However, the team really has no
idea if the output devices will ever change. To add the extra protection now would be work that served no current
puprose. It’s clear that if such protection is needed, it will be easy to add later. So, there’s really no reason to add
it now.

2. Actually the practice of test-driven development would very likely force the design to be flexible enough to endure the boss without
change. However, in this example, we’ll ignore that.

93
www.EBooksWorld.ir

Chapter 7 • What Is Agile Design?

How Did the Agile Developers Know What to Do?

The agile developers in the example above built an abstract class to protect them from changes to the input device.
How did they know how to do that? This has to do with one of the fundamental tenets of object-oriented design.

The initial design of the Copy program is inflexible because of the direction of its dependencies. Look
again at Figure 7-1. Notice that the Copy module depends directly on the KeyboardReader and the
PrinterWriter. The Copy module is a high-level module in this application. It sets the policy of the application.
It knows how to copy characters. Unfortunately, it has also been made dependent on the low-level details of the
keyboard and printer. Thus, when the low-level details change, the high-level policy is affected.

Once the inflexibility was exposed, the agile developers knew that the dependency from the Copy module to
the input device needed to be inverted3 so that Copy would no longer depend on the input device. They then
employed the STRATEGY4 pattern to create the desired inversion.

So, in short, the agile developers knew what to do because

1. They detected the problem by following agile practices;
2. They diagnosed the problem by applying design principles; and
3. They solved the problem by applying the appropriate design pattern.

The interplay between these three aspects of software development is the act of design.

Keeping the Design As Good As It Can Be
Agile developers are dedicated to keeping the design as appropriate and clean as possible. This is not a haphazard
or tentative commitment. Agile developers do not “clean up” the design every few weeks. Rather, they keep the
software as clean, simple, and expressive as they possibly can, every day, every hour, and even every minute. They
never say, “We’ll go back and fix that later.” They never let the rot begin.

The attitude that agile developers have toward the design of the software is the same attitude that surgeons
have toward sterile procedure. Sterile procedure is what makes surgery possible. Without it, the risk of infection
would be far too high to tolerate. Agile developers feel the same way about their designs. The risk of letting even
the tiniest bit of rot begin is too high to tolerate.

The design must remain clean, and since the source code is the most important expression of the design, it
must remain clean, too. Professionalism dictates that we, as software developers, cannot tolerate code rot.

Conclusion
So, what is agile design? Agile design is a process, not an event. It’s the continous application of principles, pat-
terns, and practices to improve the structure and readability of the software. It is the dedication to keeping the
design of the system as simple, clean, and expressive as possible at all times.

During the chapters that follow, we’ll be investigating the principles and patterns of software design. As you
read them, remember that an agile developer does not apply those principles and patterns to a big, up-front design.
Rather, they are applied from iteration to iteration in an attempt to keep the code, and the design it embodies,
clean.

Bibliography

1. Reeves, Jack. What Is Software Design? C++ Journal, Vol. 2, No. 2. 1992. Available at http://www.bleading-edge.com/
Publications/C++Journal/Cpjour2.htm.

3. See The Dependency-Inversion Principle (DIP) in Chapter 11.

4. We’ll learn about STRATEGY in Chapter 14.

94
www.EBooksWorld.ir

8

SRP: The Single-Responsibility
Principle

None but Buddha himself must take the responsibility of giving out occult secrets...

—E. Cobham Brewer 1810–1897.
Dictionary of Phrase and Fable. 1898.

This principle was described in the work of Tom DeMarco1 and Meilir Page-Jones.2 They called it cohesion. They
defined cohesion as the functional relatedness of the elements of a module. In this chapter we’ll shift that meaning
a bit and relate cohesion to the forces that cause a module, or a class, to change.

SRP: The Single-Responsibility Principle

A class should have only one reason to change.

Consider the bowling game from Chapter 6. For most of its development, the Game class was handling two sepa-
rate responsibilities. It was keeping track of the current frame, and it was calculating the score. In the end, RCM
and RSK separated these two responsibilities into two classes. The Game kept the responsibility to keep track of
frames, and the Scorer got the responsibility to calculate the score. (See page 78.)

1. [DeMarco79], p. 310.

2. [Page-Jones88], Chapter 6, p. 82.

From Chapter 8 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

95
www.EBooksWorld.ir

Chapter 8 • SRP: The Single-Responsibility Principle

Why was it important to separate these two responsibilities into separate classes? Because each responsibil-
ity is an axis of change. When the requirements change, that change will be manifest through a change in responsi-
bility amongst the classes. If a class assumes more than one responsibility, then there will be more than one reason
for it to change.

If a class has more than one responsibility, then the responsibilities become coupled. Changes to one respon-
sibility may impair or inhibit the ability of the class to meet the others. This kind of coupling leads to fragile
designs that break in unexpected ways when changed.

For example, consider the design in Figure 8-1. The Rectangle class has two methods shown. One draws
the rectangle on the screen, the other computes the area of the rectangle.

Two different applications use the Rectangle class. One application does computational geometry. It uses
Rectangle to help it with the mathematics of geometric shapes. It never draws the rectangle on the screen. The
other application is graphical in nature. It may also do some computational geometry, but it definitely draws the
rectangle on the screen.

This design violates the Single-Responsibility Principle (SRP). The Rectangle class has two responsibili-
ties. The first responsibility is to provide a mathematical model of the geometry of a rectangle. The second respon-
sibility is to render the rectangle on a graphical user interface.

This violation of the SRP causes several nasty problems. First, we must include the GUI in the computational
geometry application. If this were a C++ application, the GUI would have to be linked in, consuming link time,
compile time, and memory footprint. In a Java application, the .class files for the GUI have to be deployed to the
target platform.

Second, if a change to the GraphicalApplication causes the Rectangle to change for some reason, that
change may force us to rebuild, retest, and redeploy the ComputationalGeometryApplication. If we forget to
do this, that application may break in unpredictable ways.

A better design is to separate the two responsibilities into two completely different classes as shown in Fig-
ure 8-2. This design moves the computational portions of Rectangle into the GeometricRectangle class. Now
changes made to the way rectangles are rendered cannot affect the ComputationalGeometryApplication.

Figure 8-1 More than one responsibility

Figure 8-2 Separated Responsibilities

Computational
Geometry

Application

Graphical
Application

Rectangle

+ draw()
+ area() : double

GUI

Computational
Geometry

Application

Graphical
Application

Rectangle

+ draw()

Geometric
Rectangle

+ area() : double
GUI

96
www.EBooksWorld.ir

SRP: The Single-Responsibility Principle

What Is a Responsibility?

In the context of the SRP, we define a responsibility to be “a reason for change.” If you can think of more than one
motive for changing a class, then that class has more than one responsibility. This is sometimes hard to see. We are
accustomed to thinking of responsibility in groups. For example, consider the Modem interface in Listing 8-1. Most
of us will agree that this interface looks perfectly reasonable. The four functions it declares are certainly functions
belonging to a modem.

Listing 8-1

Modem.java -- SRP Violation

interface Modem
{
 public void dial(String pno);
 public void hangup();
 public void send(char c);
 public char recv();
}

However, there are two responsibilities being shown here. The first responsibility is connection manage-
ment. The second is data communication. The dial and hangup functions manage the connection of the modem,
while the send and recv functions communicate data.

Should these two responsibilities be separated? That depends on how the application is changing. If the
application changes in ways that affect the signature of the connection functions, then the design will smell of
Rigidity because the classes that call send and recv will have to be recompiled and redeployed more often than we
like. In that case the two responsibilities should be separated as shown in Figure 8-3. This keeps the client applica-
tions from coupling the two responsibilities.

If, on the other hand, the application is not changing in ways that cause the the two responsibilities to change
at different times, then there is no need to separate them. Indeed, separating them would smell of Needless
Complexity.

There is a corollary here. An axis of change is an axis of change only if the changes actually occur. It is not
wise to apply the SRP, or any other principle for that matter, if there is no symptom.

Separating Coupled Responsibilities

Notice that in Figure 8-3 I kept both responsibilities coupled in the ModemImplementation class. This is not
desirable, but it may be necessary. There are often reasons, having to do with the details of the hardware or OS,
that force us to couple things that we’d rather not couple. However, by separating their interfaces we have decou-
pled the concepts as far as the rest of the application is concerned.

Figure 8-3 Separated Modem Interface

+ send(:char)
+ recv() : char

Data
Channel

«interface»

+ dial(pno : String)
+ hangup()

«interface»

Connection

Modem
Implementation

97
www.EBooksWorld.ir

Chapter 8 • SRP: The Single-Responsibility Principle

We may view the ModemImplementation class as a kludge, or a wart; however, notice that all dependen-
cies flow away from it. Nobody needs to depend on this class. Nobody except main needs to know that it exists.
Thus, we’ve put the ugly bit behind a fence. Its ugliness need not leak out and pollute the rest of the application.

Persistence

Figure 8-4 shows a common violation of the SRP. The Employee class contains business rules and persistence
control. These two responsibilities should almost never be mixed. Business rules tend to change frequently, and
though persistence may not change as frequently, it changes for completely different reasons. Binding business
rules to the persistence subsystem is asking for trouble.

Fortunately, as we saw in Chapter 4, the practice of test-driven development will usually force these two
responsibilities to be separated long before the design begins to smell. However, in cases where the tests did not
force the separation, and the smells of Rigidity and Fragility become strong, the design should be refactored using
the FACADE or PROXY patterns to separate the two responsibilities.

Conclusion
The SRP is one of the simplest of the principles, and one of the hardest to get right. Conjoining responsibilities is
something that we do naturally. Finding and separating those responsibilities from one another is much of what
software design is really about. Indeed, the rest of the principles we will discuss come back to this issue in one way
or another.

Bibliography

1. DeMarco, Tom. Structured Analysis and System Specification. Yourdon Press Computing Series. Englewood Cliff, NJ: 1979.
2. Page-Jones, Meilir. The Practical Guide to Structured Systems Design, 2d ed. Englewood Cliff, NJ: Yourdon Press Computing Series,

1988.

Figure 8-4 Coupled Persistence

+ CalculatePay
+ Store

Persistence
Subsystem

Employee

98
www.EBooksWorld.ir

9

OCP: The Open–Closed Principle

Dutch Door—(Noun) A door divided in two horizontally
so that either part can be left open or closed.

—The American Heritage® Dictionary of the
English Language: Fourth Edition. 2000.

As Ivar Jacobson has said, “All systems change during their life cycles. This must be born in mind when develop-
ing systems are expected to last longer than the first version.”1 How can we create designs that are stable in the
face of change and that will last longer than the first version? Bertrand Meyer gave us guidance as long ago as
1988 when he coined the now famous Open–Closed Principle.2

OCP: The Open–Closed Principle
Software entities (classes, modules, functions, etc.) should be open for extension, but closed for
modification.

When a single change to a program results in a cascade of changes to dependent modules, the design smells of
Rigidity. The OCP advises us to refactor the system so that further changes of that kind will not cause more

1. [Jacobson92], p. 21.

2. [Meyer97], p. 57.

From Chapter 9 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

99
www.EBooksWorld.ir

Chapter 9 • OCP: The Open–Closed Principle

modifications. If the OCP is applied well, then further changes of that kind are achieved by adding new code, not
by changing old code that already works.

This may seem like motherhood and apple pie—the golden unachievable ideal—but in fact there are some
relatively simple and effective strategies for approaching that ideal.

Description
Modules that conform to the Open–Closed Principle have two primary attributes. They are

1. “Open for extension.”
This means that the behavior of the module can be extended. As the requirements of the application change,
we are able to extend the module with new behaviors that satisfy those changes. In other words, we are able
to change what the module does.

2. “Closed for modification.”
Extending the behavior of a module does not result in changes to the source or binary code of the module.
The binary executable version of the module, whether in a linkable library, a DLL, or a Java .jar, remains
untouched.

It would seem that these two attributes are at odds with each other. The normal way to extend the behavior of
a module is to make changes to the source code of that module. A module that cannot be changed is normally
thought to have a fixed behavior.

How is it possible that the behaviors of a module can be modified without changing its source code? How
can we change what a module does, without changing the module?

Abstraction Is the Key
In C++, Java, or any other OOPL,3 it is possible to create abstractions that are fixed and yet represent an
unbounded group of possible behaviors. The abstractions are abstract base classes, and the unbounded group of
possible behaviors is represented by all the possible derivative classes.

It is possible for a module to manipulate an abstraction. Such a module can be closed for modification since
it depends upon an abstraction that is fixed. Yet the behavior of that module can be extended by creating new deriv-
atives of the abstraction.

Figure 9–1 shows a simple design that does not conform to the OCP. Both the Client and Server classes
are concrete. The Client class uses the Server class. If we wish for a Client object to use a different server
object, then the Client class must be changed to name the new server class.

Figure 9–2 shows the corresponding design that conforms to the OCP. In this case, the ClientInterface
class is an abstract class with abstract member functions. The Client class uses this abstraction; however, objects
of the Client class will be using objects of the derivative Server class. If we want Client objects to use a dif-
ferent server class, then a new derivative of the ClientInterface class can be created. The Client class can
remain unchanged.

The Client has some work that it needs to get done, and it can describe that work in terms of the abstract
interface presented by ClientInterface. Subtypes of ClientInterface can implement that interface in any

3. Object-oriented programming language.

Figure 9-1 Client is not open and closed

Client Server

100
www.EBooksWorld.ir

The Shape Application

manner they choose. Thus, the behavior specified in Client can be extended and modified by creating new sub-
types of ClientInterface.

You may wonder why I named ClientInterface the way I did. Why didn’t I call it AbstractServer
instead? The reason, as we will see later, is that abstract classes are more closely associated to their clients than to
the classes that implement them.

Figure 9-3 shows an alternative structure. The Policy class has a set of concrete public functions that
implements a policy of some kind. Similar to the functions of the Client in Figure 9-2. As before, those policy
functions describe some work that needs to be done in terms of some abstract interfaces. However, in this case, the
abstract interfaces are part of the Policy class itself. In C++ they would be pure virtual functions, and in Java they
would be abstract methods. Those functions are implemented in the subtypes of Policy. Thus, the behaviors spec-
ified within Policy can be extended or modified by creating new derivatives of the Policy class.

These two patterns are the most common ways of satisfying the OCP. They represent a clear separation of
generic functionality from the detailed implementation of that functionality.

The Shape Application
The following example has been shown in many books on OOD. It is the infamous “Shape” example. It is nor-
mally used to show how polymorphism works. However, this time we will use it to elucidate the OCP.

We have an application that must be able to draw circles and squares on a standard GUI. The circles and
squares must be drawn in a particular order. A list of the circles and squares will be created in the appropriate
order, and the program must walk the list in that order and draw each circle or square.

Violating the OCP

In C, using procedural techniques that do not conform to the OCP, we might solve this problem as shown in List-
ing 9-1. Here we see a set of data structures that has the same first element, but is different beyond that. The first
element of each is a type code that identifies the data structure as either a circle or a square. The function
DrawAllShapes walks an array of pointers to these data structures, examining the type code and then calling the
appropriate function (either DrawCircle or DrawSquare).

Figure 9-2 STRATEGY pattern: Client
is both open and closed

Figure 9-3 Template Method Pattern:
Base class is open and closed

Client Interface

Server

Client
«interface»

Policy

+ PolicyFunction()
- ServiceFunction()

Implementation

- ServiceFunction()

101
www.EBooksWorld.ir

Chapter 9 • OCP: The Open–Closed Principle

Listing 9-1

Procedural Solution to the Square/Circle Problem

--shape.h---------------------------------------
enum ShapeType {circle, square};

struct Shape
{
 ShapeType itsType;
};

--circle.h---------------------------------------
struct Circle
{
 ShapeType itsType;
 double itsRadius;
 Point itsCenter;
};

void DrawCircle(struct Circle*);

--square.h---------------------------------------
struct Square
{
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};

void DrawSquare(struct Square*);

--drawAllShapes.cc-------------------------------
typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++)
 {
 struct Shape* s = list[i];
 switch (s->itsType)
 {
 case square:
 DrawSquare((struct Square*)s);
 break;

 case circle:
 DrawCircle((struct Circle*)s);
 break;
 }
 }
}

The function DrawAllShapes does not conform to the OCP because it cannot be closed against new kinds
of shapes. If I wanted to extend this function to be able to draw a list of shapes that included triangles, I would

102
www.EBooksWorld.ir

The Shape Application

have to modify the function. In fact, I would have to modify the function for any new type of shape that I needed
to draw.

Of course this program is only a simple example. In real life, the switch statement in the DrawAllShapes
function would be repeated over and over again in various functions all through the application, each one doing
something a little different. There might be functions for dragging shapes, stretching shapes, moving shapes, delet-
ing shapes, etc. Adding a new shape to such an application means hunting for every place that such switch state-
ments (or if/else chains) exist and adding the new shape to each.

Moreover, it is very unlikely that all the switch statements and if/else chains would be as nicely struc-
tured as the one in DrawAllShapes. It is much more likely that the predicates of the if statements would be com-
bined with logical operators or that the case clauses of the switch statements would be combined so as to
“simplify” the local decision making. In some pathological situations, there may be functions that do precisely the
same things to Squares that they do to Circles. Such functions would not even have the switch/case state-
ments or if/else chains. Thus, the problem of finding and understanding all the places where the new shape
needs to be added can be nontrivial.

Also, consider the kind of changes that would have to be made. We’d have to add a new member to the
ShapeType enum. Since all the different shapes depend on the declaration of this enum, we’d have to recompile
them all.4 And we’d also have to recompile all the modules that depend on Shape.

So, not only must we change the source code of all switch/case statements or if/else chains, but we
also must alter the binary files (via recompilation) of all the modules that use any of the Shape data structures.
Changing the binary files means that any DLLs, shared libraries, or other kinds of binary components must be
redeployed. The simple act of adding a new shape to the application causes a cascade of subsequent changes to
many source modules and to even more binary modules and binary components. Clearly, the impact of adding a
new shape is very large.

Bad Design. Let’s run through this again. The solution in
Listing 9-1 is Rigid because the addition of Triangle causes
Shape, Square, Circle, and DrawAllShapes to be recompiled
and redeployed. It is Fragile because there will be many other
switch/case or if/else statements that are both hard to find
and hard to decipher. It is Immobile because anyone attempting to
reuse DrawAllShapes in another program is required to bring
along Square and Circle, even if that new program does not need
them. Thus, Listing 9-1 exhibits many of the smells of bad design.

Conforming to the OCP

Listing 9-2 shows the code for a solution to the square/circle problem that conforms to the OCP. In this case,
we have written an abstract class named Shape. This abstract class has a single abstract method named Draw. Both
Circle and Square are derivatives of the Shape class.

Listing 9-2

OOD solution to Square/Circle problem.

class Shape
{
 public:
 virtual void Draw() const = 0;
};

4. Changes to enums can cause a change in the size of the variable used to hold the enum. So, great care must be taken if you decide that
you don’t really need to recompile the other shape declarations.

103
www.EBooksWorld.ir

Chapter 9 • OCP: The Open–Closed Principle

class Square : public Shape
{
 public:
 virtual void Draw() const;
};

class Circle : public Shape
{
 public:
 virtual void Draw() const;
};

void DrawAllShapes(vector<Shape*>& list)
{
 vector<Shape*>::iterator i;
 for (i=list.begin(); i != list.end(); i++)
 (*i)->Draw();
}

Note that if we want to extend the behavior of the DrawAllShapes function in Listing 9-2 to draw a new
kind of shape, all we need do is add a new derivative of the Shape class. The DrawAllShapes function does not
need to change. Thus DrawAllShapes conforms to the OCP. Its behavior can be extended without modifying it.
Indeed, adding a Triangle class has absolutely no effect on any of the modules shown here. Clearly some part of
the system must change in order to deal with the Triangle class, but all of the code shown here is immune to the
change.

In a real application, the Shape class would have many more methods. Yet adding a new shape to the appli-
cation is still quite simple since all that is required is to create the new derivative and implement all its functions.
There is no need to hunt through all of the application looking for places that require changes. This solution is not
Fragile.

Nor is the solution Rigid. No existing source modules need to be modified, and with one exception, no exist-
ing binary modules need to be rebuilt. The module that actually creates instances of the new derivative of Shape
must be modified. Typically, this is either done by main, in some function called by main, or in the method of
some object created by main.5

Finally, the solution is not Immobile. DrawAllShapes can be reused by any application without the need to
bring Square or Circle along for the ride. Thus, the solution exhibits none of the attributes of bad design men-
tioned previously.

This program conforms to the OCP. It is changed by adding new code rather than by changing existing code.
Therefore, it does not experience the cascade of changes exhibited by nonconforming programs. The only changes
required are the addition of the new module and the change related to main that allows the new objects to be
instantiated.

OK, I Lied

The previous example was blue sky and apple pie! Consider what would happen to the DrawAllShapes function
from Listing 9-2 if we decided that all Circles should be drawn before any Squares. The DrawAllShapes
function is not closed against a change like this. To implement that change, we’ll have to go into DrawAllShapes
and scan the list first for Circles and then again for Squares.

5. Such objects are known as factories, and we’ll have more to say about them in Chapter 21 on page 269.

104
www.EBooksWorld.ir

The Shape Application

Anticipation and “Natural” Structure

Had we anticipated this kind of change, then we could have invented an abstraction that protected us from it. The
abstractions we chose in Listing 9-2 are more of a hindrance to this kind of change than a help. You may find this
surprising. After all, what could be more natural than a Shape base class with Square and Circle derivatives?
Why isn’t that natural model the best one to use? Clearly the answer is that the model is not natural in a system
where ordering is more significant than shape type.

This leads us to a disturbing conclusion. In general, no matter how “closed” a module is, there will always be
some kind of change against which it is not closed. There is no model that is natural to all contexts!

Since closure cannot be complete, it must be strategic. That is, the
designer must choose the kinds of changes against which to close his
design. He must guess at the most likely kinds of changes, and then con-
struct abstractions to protect him from those changes.

This takes a certain amount of prescience derived from experience.
The experienced designer hopes he knows the users and the industry well
enough to judge the probability of different kinds of changes. He then
invokes the OCP against the most probable changes.

This is not easy. It amounts to making educated guesses about the likely kinds of changes that the applica-
tion will suffer over time. When the developers guess right, they win. When they guess wrong, they lose. And they
will certainly guess wrong much of the time.

Also, conforming to the OCP is expensive. It takes development time and effort to create the appropriate
abstractions. Those abstractions also increase the complexity of the software design. There is a limit to the amount
of abstraction that the developers can afford. Clearly, we want to limit the application of the OCP to changes that
are likely.

How do we know which changes are likely? We do the appropriate research, we ask the appropriate ques-
tions, and we use our experience and common sense. And after all that, we wait until the changes happen!

Putting the “Hooks” In

How do we protect ourselves from changes? In the previous century, we had a saying. We’d “put the hooks in” for
changes that we thought might take place. We felt that this would make our software flexible.

However, the hooks we put in were often incorrect. Worse, they smelled of Needless Complexity that had to
be supported and maintained, even though they weren’t used. This is not a good thing. We don’t want to load the
design with lots of unnecessary abstraction. Rather, we often wait until we actually need the abstraction, and then
we put it in.

Fool Me Once... There is an old saying: “Fool me once, shame on you. Fool me twice, shame on me.”
This is a powerful attitude in software design. To keep from loading our software with Needless Complexity, we
may permit ourselves to be fooled once. This means we initially write our code expecting it not to change. When a
change occurs, we implement the abstractions that protect us from future changes of that kind. In short, we take the
first bullet, and then we make sure we are protected from any more bullets coming from that gun.

Stimulating Change. If we decide to take the first bullet, then it is to our advantage to get the bullets fly-
ing early and frequently. We want to know what kinds of changes are likely before we are very far down the devel-
opment path. The longer we wait to find out what kinds of changes are likely, the harder it will be to create the
appropriate abstractions.

Therefore, we need to stimulate the changes. We do this through several of the means we discussed in
Chapter 2.

105
www.EBooksWorld.ir

Chapter 9 • OCP: The Open–Closed Principle

• We write tests first. Testing is one kind of usage of the system. By writing tests first we force the system to
be testable. Therefore changes in testability will not surprise us later. We will have built the abstractions that
make the system testable. We are likely to find that many of these abstractions will protect us from other
kinds of changes later.

• We develop using very short cycles—days instead of weeks.
• We develop features before infrastructure and frequently show those features to stakeholders.
• We develop the most important features first.
• We release the software early and often. We get it in front of our customers and users as quickly and as often

as possible.

Using Abstraction to Gain Explicit Closure

OK, so we’ve taken the first bullet. The user wants us to draw all Circles before any Squares. Now we want to
protect ourselves from any future changes of that kind.

How can we close the DrawAllShapes function against changes in the ordering of drawing? Remember
that closure is based upon abstraction. Thus, in order to close DrawAllShapes against ordering, we need some
kind of “ordering abstraction.” This abstraction would provide an abstract interface through which any possible
ordering policy could be expressed.

An ordering policy implies that, given any two objects, it is possible to discover which ought to be drawn
first. We can define an abstract method of Shape named Precedes. This function takes another Shape as an argu-
ment and returns a bool result. The result is true if the Shape object that receives the message should be drawn
before the Shape object passed as the argument.

In C++, this function could be represented by an overloaded operator< function. Listing 9-3 shows what
the Shape class might look like with the ordering methods in place.

Now that we have a way to determine the relative ordering of two Shape objects, we can sort them and then
draw them in order. Listing 9-4 shows the C++ code that does this.

Listing 9-3

Shape with ordering methods

class Shape
{
 public:
 virtual void Draw() const = 0;
 virtual bool Precedes(const Shape&) const = 0;

 bool operator<(const Shape& s) {return Precedes(s);}
};

Listing 9-4

DrawAllShapes with Ordering

template <typename P>
class Lessp // utility for sorting containers of pointers.
{
 public:
 bool operator()(const P p, const P q) {return (*p) < (*q);}
};

void DrawAllShapes(vector<Shape*>& list)
{
 vector<Shape*> orderedList = list;

106
www.EBooksWorld.ir

The Shape Application

 sort(orderedList.begin(),
 orderedList.end(),
 Lessp<Shape*>());

 vector<Shape*>::const_iterator i;
 for (i=orderedList.begin(); i != orderedList.end(); i++)
 (*i)->Draw();
}

This gives us a means for ordering Shape objects and for drawing them in the appropriate order. But we still
do not have a decent ordering abstraction. As it stands, the individual Shape objects will have to override the
Precedes method in order to specify ordering. How would this work? What kind of code would we write in
Circle::Precedes to ensure that Circles were drawn before Squares? Consider Listing 9–5.

Listing 9-5

Ordering a Circle

bool Circle::Precedes(const Shape& s) const
{
 if (dynamic_cast<Square*>(s))
 return true;
 else
 return false;
}

It should be very clear that this function, and all its siblings in the other derivatives of Shape, do not con-
form to the OCP. There is no way to close them against new derivatives of Shape. Every time a new derivative of
Shape is created, all the Precedes() functions will need to be changed.6

Of course this doesn’t matter if no new derivatives of Shape are ever created. On the other hand, if they are
created frequently, this design would cause a significant amount of thrashing. Again, we’d take the first bullet.

Using a “Data-Driven” Approach to Achieve Closure

If we must close the derivatives of Shape from knowledge of each other, we can use a table-driven approach. List-
ing 9-6 shows one possibility.

Listing 9-6

Table driven type ordering mechanism

#include <typeinfo>
#include <string>
#include <iostream>

using namespace std;

class Shape
{
 public:
 virtual void Draw() const = 0;
 bool Precedes(const Shape&) const;

6. It is possible to solve this problem by using the ACYCLIC VISITOR pattern described in Chapter 29. Showing that solution now would be
getting ahead of ourselves a bit. I’ll remind you to come back here at the end of that chapter.

107
www.EBooksWorld.ir

Chapter 9 • OCP: The Open–Closed Principle

 bool operator<(const Shape& s) const
 {return Precedes(s);}
 private:
 static const char* typeOrderTable[];
};

const char* Shape::typeOrderTable[] =
{
 typeid(Circle).name(),
 typeid(Square).name(),
 0
};

// This function searches a table for the class names.
// The table defines the order in which the
// shapes are to be drawn. Shapes that are not
// found always precede shapes that are found.
//
bool Shape::Precedes(const Shape& s) const
{
 const char* thisType = typeid(*this).name();
 const char* argType = typeid(s).name();
 bool done = false;
 int thisOrd = -1;
 int argOrd = -1;
 for (int i=0; !done; i++)
 {
 const char* tableEntry = typeOrderTable[i];
 if (tableEntry != 0)
 {
 if (strcmp(tableEntry, thisType) == 0)
 thisOrd = i;
 if (strcmp(tableEntry, argType) == 0)
 argOrd = i;
 if ((argOrd >= 0) && (thisOrd >= 0))
 done = true;
 }
 else // table entry == 0
 done = true;
 }
 return thisOrd < argOrd;
}

By taking this approach, we have successfully closed the DrawAllShapes function against ordering issues
in general and each of the Shape derivatives against the creation of new Shape derivatives or a change in policy
that reorders the Shape objects by their type. (e.g., changing the ordering so that Squares are drawn first.)

The only item that is not closed against the order of the various Shapes is the table itself. That table can be
placed in its own module, separate from all the other modules, so that changes to it do not affect any of the other
modules. Indeed, in C++, we can choose which table to use at link time.

Conclusion
In many ways, the OCP is at the heart of object-oriented design. Conformance to this principle is what yields the
greatest benefits claimed for object oriented technology (i.e., flexibility, reusability, and maintainability). Yet con-
formance to this principle is not achieved simply by using an object-oriented programming language. Nor is it a

108
www.EBooksWorld.ir

Conclusion

good idea to apply rampant abstraction to every part of the application. Rather, it requires a dedication on the part
of the developers to apply abstraction only to those parts of the program that exhibit frequent change. Resisting
premature abstraction is as important as abstraction itself.

Bibliography

1. Jacobson, Ivar, et al. Object-Oriented Software Engineering. Reading, MA: Addison–Wesley, 1992.
2. Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. Upper Saddle River, NJ: Prentice Hall, 1997.

109
www.EBooksWorld.ir

110
www.EBooksWorld.ir

10

LSP: The Liskov Substitution
Principle

The primary mechanisms behind the OCP are abstraction and polymorphism. In statically typed languages like
C++ and Java, one of the key mechanisms that supports abstraction and polymorphism is inheritance. It is by using
inheritance that we can create derived classes that implement abstract methods in base classes.

What are the design rules that govern this particular use of inheritance? What are the characteristics of the
best inheritance hierarchies? What are the traps that will cause us to create hierarchies that do not conform to the
OCP? These are the questions that are addressed by the Liskov Substitution Principle (LSP).

LSP: The Liskov Substitution Principle
The LSP can be paraphrased as follows:

SUBTYPES MUST BE SUBSTITUTABLE FOR THEIR BASE TYPES.

Barbara Liskov first wrote this principle in 1988.1 She said,

What is wanted here is something like the following substitution property: If for each object of type
S there is an object of type T such that for all programs P defined in terms of T, the behavior of P
is unchanged when is substituted for then S is a subtype of T.

1. [Liskov88].

o1

o2

o1 o2

From Chapter 10 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

111
www.EBooksWorld.ir

Chapter 10 • LSP: The Liskov Substitution Principle

The importance of this principle becomes obvious when you consider the consequences of violating it. Pre-
sume that we have a function f that takes, as its argument, a pointer or reference to some base class B. Presume also
that there is some derivative D of B which, when passed to f in the guise of B, causes f to misbehave. Then D vio-
lates the LSP. Clearly D is Fragile in the presence of f.

The authors of f will be tempted to put in some kind of test for D so that f can behave properly when a D is
passed to it. This test violates the OCP because now f is not closed to all the various derivatives of B. Such tests are
a code smell that are the result of inexperienced developers (or, what’s worse, developers in a hurry) reacting to
LSP violations.

A Simple Example of a Violation of the LSP
Violating the LSP often results in the use of Run-Time Type Information (RTTI) in a manner that grossly violates
the OCP. Frequently, an explicit if statement or if/else chain is used to determine the type of an object so that
the behavior appropriate to that type can be selected. Consider Listing 10-1.

Listing 10-1

A violation of LSP causing a violation of OCP.

struct Point {double x,y;};

struct Shape {
 enum ShapeType {square, circle} itsType;
 Shape(ShapeType t) : itsType(t) {}
};

struct Circle : public Shape
{
 Circle() : Shape(circle) {};
 void Draw() const;
 Point itsCenter;
 double itsRadius;
};

struct Square : public Shape
{
 Square() : Shape(square) {};
 void Draw() const;
 Point itsTopLeft;
 double itsSide;
};

void DrawShape(const Shape& s)
{
 if (s.itsType == Shape::square)
 static_cast<const Square&>(s).Draw();
 else if (s.itsType == Shape::circle)
 static_cast<const Circle&>(s).Draw();
}

Clearly, the DrawShape function in Listing 10-1 violates the OCP. It must know about every possible deriv-
ative of the Shape class, and it must be changed whenever new derivatives of Shape are created. Indeed, many
rightly view the structure of this function as anathema to good design. What would drive a programmer to write a
function like this?

112
www.EBooksWorld.ir

Square and Rectangle, a More Subtle Violation

Consider Joe the Engineer. Joe has studied object-oriented technology and has come to the conclusion that
the overhead of polymorphism is too high to pay.2 Therefore, he defined class Shape without any virtual func-
tions. The classes (structs) Square and Circle derive from Shape and have Draw() functions, but they don’t
override a function in Shape. Since Circle and Square are not substitutable for Shape, DrawShape must
inspect its incoming Shape, determine its type, and then call the appropriate Draw function.

The fact that Square and Circle cannot be substituted for Shape is a violation of the LSP. This violation
forced the violation of the OCP by DrawShape. Thus, a violation of LSP is a latent violation of OCP.

Square and Rectangle, a More Subtle Violation
Of course, there are other, far more subtle, ways of violating the LSP. Consider an application which uses the
Rectangle class as described in Listing 10-2.

Listing 10-2

Rectangle class

class Rectangle
{
 public:
 void SetWidth(double w) {itsWidth=w;}
 void SetHeight(double h) {itsHeight=w;}
 double GetHeight() const {return itsHeight;}
 double GetWidth() const {return itsWidth;}
 private:
 Point itsTopLeft;
 double itsWidth;
 double itsHeight;
};

Imagine that this application works well and is installed in many sites. As is the case with all successful soft-
ware, its users demand changes from time to time. One day, the users demand the ability to manipulate squares in
addition to rectangles.

It is often said that inheritance is the IS-A relationship. In other words, if a new kind of object can be said to
fulfill the IS-A relationship with an old kind of object, then the class of the new object should be derived from the
class of the old object.

For all normal intents and purposes, a square is a rectangle. Thus, it is logical to view the Square class as
being derived from the Rectangle class. (See Figure 10-1.)

This use of the IS-A relationship is sometimes thought to be one of the fundamental techniques of object-
oriented analysis:3 A square is a rectangle, and so the Square class should be derived from the Rectangle class.

2. On a reasonably fast machine, that overhead is on the order of 1ns per method invocation, so it’s hard to see Joe’s point.

Figure 10-1 Square inherits from Rectangle

3. A term that is frequently used but seldom defined.

Rectangle

Square

113
www.EBooksWorld.ir

Chapter 10 • LSP: The Liskov Substitution Principle

However, this kind of thinking can lead to some subtle, yet significant, problems. Generally, these problem are not
foreseen until we see them in code.

Our first clue that something has gone wrong might be the fact that a Square does not need both itsHeight
and itsWidth member variables. Yet it will inherit them from Rectangle. Clearly, this is wasteful. In many
cases, such waste is insignificant. But if we must create hundreds of thousands of Square objects (e.g., a CAD/
CAE program in which every pin of every component of a complex circuit is drawn as a square), this waste could
be significant.

Let’s assume, for the moment, that we are not very concerned with memory efficiency. There are other prob-
lems that ensue from deriving Square from Rectangle. Square will inherit the SetWidth and SetHeight
functions. These functions are inappropriate for a Square, since the width and height of a square are identical.
This is a strong indication that there is a problem. However, there is a way to sidestep the problem. We could over-
ride SetWidth and SetHeight as follows:

void Square::SetWidth(double w)
{
 Rectangle::SetWidth(w);
 Rectangle::SetHeight(w);
}

void Square::SetHeight(double h)
{
 Rectangle::SetHeight(h);
 Rectangle::SetWidth(h);
}

Now, when someone sets the width of a Square object, its height will change correspondingly. And when
someone sets the height, its width will change with it. Thus, the invariants4 of the Square remain intact. The
Square object will remain a mathematically proper square.

Square s;
s.SetWidth(1); // Fortunately sets the height to 1 too.
s.SetHeight(2); // sets width and height to 2. Good thing.

But consider the following function:

void f(Rectangle& r)
{
 r.SetWidth(32); // calls Rectangle::SetWidth
}

If we pass a reference to a Square object into this function, the Square object will be corrupted because the
height won’t be changed. This is a clear violation of LSP. The f function does not work for derivatives of its argu-
ments. The reason for the failure is that SetWidth and SetHeight were not declared virtual in Rectangle;
therefore, they are not polymorphic.

We can fix this easily. However, when the creation of a derived class causes us to make changes to the base
class, it often implies that the design is faulty. Certainly it violates the OCP. We might counter this by saying that
forgetting to make SetWidth and SetHeight virtual was the real design flaw, and we are just fixing it now.
However, this is hard to justify since setting the height and width of a rectangle are exceedingly primitive opera-
tions. By what reasoning would we make them virtual if we did not anticipate the existence of Square.

4. Those properties that must always be true regardless of state.

114
www.EBooksWorld.ir

Square and Rectangle, a More Subtle Violation

Still, let’s assume that we accept the argument and fix the classes. We wind up with the code in Listing 10-3.

Listing 10-3

Rectangle and Square that are Self-Consistent.

class Rectangle
{
 public:
 virtual void SetWidth(double w) {itsWidth=w;}
 virtual void SetHeight(double h) {itsHeight=h;}
 double GetHeight() const {return itsHeight;}
 double GetWidth() const {return itsWidth;}
 private:
 Point itsTopLeft
 double itsHeight;
 double itsWidth;
};

class Square : public Rectangle
{
 public:
 virtual void SetWidth(double w);
 virtual void SetHeight(double h);
};

void Square::SetWidth(double w)
{
 Rectangle::SetWidth(w);
 Rectangle::SetHeight(w);
}

void Square::SetHeight(double h)
{
 Rectangle::SetHeight(h);
 Rectangle::SetWidth(h);
}

The Real Problem

Square and Rectangle now appear to work. No matter what you do to a Square object, it will remain consistent
with a mathematical square. And regardless of what you do to a Rectangle object, it will remain a mathematical
rectangle. Moreover, you can pass a Square into a function that accepts a pointer or reference to a Rectangle,
and the Square will still act like a square and will remain consistent.

Thus, we might conclude that the design is now self-consistent and correct. However, this conclusion would
be amiss. A design that is self-consistent is not necessarily consistent with all its users! Consider the following
function g:

void g(Rectangle& r)
{
 r.SetWidth(5);
 r.SetHeight(4);
 assert(r.Area() == 20);
}

115
www.EBooksWorld.ir

Chapter 10 • LSP: The Liskov Substitution Principle

This function invokes the SetWidth and SetHeight members of what it believes to be a Rectangle. The
function works just fine for a Rectangle, but it declares an assertion error if passed a Square. So here is the real
problem: The author of g assumed that changing the width of a Rectangle leaves its height unchanged.

Clearly, it is reasonable to assume that changing the width of a rectangle does not affect its height! However,
not all objects that can be passed as Rectangles satisfy that assumption. If you pass an instance of a Square to a
function like g, whose author made that assumption, then that function will malfunction. Function g is Fragile with
respect to the Square/Rectangle hierarchy.

Function g shows that there exist functions that take pointers or references to Rectangle objects, but that can-
not operate properly on Square objects. Since, for these functions, Square is not substitutable for Rectangle, the
relationship between Square and Rectangle violates the LSP.

One might contend that the problem lay in function g—that the author had no right to make the assumption
that width and height were independent. The author of g would disagree. The function g takes a Rectagle as its
argument. There are invariants, statements of truth, that obviously apply to a class named Rectangle, and one of
those invariants is that height and width are independent. The author of g had every right to assert this invariant. It
is the author of Square that has violated the invariant.

Interestingly enough, the author of Square did not violate an invariant of Square. By deriving Square
from Rectangle, the author of Square violated an invariant of Rectangle!

Validity Is Not Intrinsic

The LSP leads us to a very important conclusion: A model, viewed in isolation, can-
not be meaningfully validated. The validity of a model can only be expressed in
terms of its clients. For example, when we examined the final version of the Square
and Rectangle classes in isolation, we found that they were self-consistent and
valid. Yet when we looked at them from the viewpoint of a programmer who made
reasonable assumptions about the base class, the model broke down.

When considering whether a particular design is appropriate or not, one can-
not simply view the solution in isolation. One must view it in terms of the reason-
able assumptions made by the users of that design.5

Who knows what reasonable assumptions the users of a design are going to
make? Most such assumptions are not easy to anticipate. Indeed, if we tried to
anticipate them all, we’d likely wind up imbuing our system with the smell of Needless Complexity. Therefore,
like all other principles, it is often best to defer all but the most obvious LSP violations until the related Fragility
has been smelled.

ISA Is about Behavior

So what happened? Why did the apparently reasonable model of the Square and Rectangle go bad? After all,
isn’t a Square a Rectangle? Doesn’t the IS-A relationship hold?

Not as far as the author of g is concerned! A square might be a rectangle, but from g’s point of view, a
Square object is definitely not a Rectangle object. Why? Because the behavior of a Square object is not con-
sistent with g’s expectation of the behavior of a Rectangle object. Behaviorally, a Square is not a Rectangle,
and it is behavior that software is really all about. The LSP makes it clear that in OOD, the IS-A relationship per-
tains to behavior that can be reasonably assumed and that clients depend on.

5. Often you will find that those reasonable assumptions are asserted in the unit tests written for the base class. Yet another good reason to
practice test-driven development.

116
www.EBooksWorld.ir

A Real Example

Design by Contract

Many developers may feel uncomfortable with the notion of behavior that is “reasonably assumed.” How do you
know what your clients will really expect? There is a technique for making those reasonable assumptions explicit,
thereby enforcing the LSP. The technique is called design by contract (DBC) and is expounded by Bertrand
Meyer.6

Using DBC, the author of a class explicitly states the contract for that class. The contract informs the author
of any client code about the behaviors that can be relied on. The contract is specified by declaring preconditions
and postconditions for each method. The preconditions must be true in order for the method to execute. On com-
pletion, the method guarantees that the postconditions are true.

We can view the postcondition of Rectangle::SetWidth(double w) as follows:

assert((itsWidth == w) && (itsHeight == old.itsHeight));

In this example, old is the value of the Rectangle before SetWidth is called. Now the rule for precondi-
tions and postconditions of derivatives, as stated by Meyer, is:

A routine redeclaration [in a derivative] may only replace the original precondition by one equal or
weaker, and the original postcondition by one equal or stronger.7

In other words, when using an object through its base-class interface, the user knows only the preconditions
and postconditions of the base class. Thus, derived objects must not expect such users to obey preconditions that
are stronger than those required by the base class. That is, they must accept anything that the base class could
accept. Also, derived classes must conform to all the postconditions of the base. That is, their behaviors and out-
puts must not violate any of the constraints established for the base class. Users of the base class must not be con-
fused by the output of the derived class.

Clearly, the postcondition of Square::SetWidth(double w) is weaker8 than the postcondition of
Rectangle::SetWidth(double w), since it does not enforce the constraint, (itsHeight == old.its

Height). Thus, the SetWidth method of Square violates the contract of the base class.
Certain languages, like Eiffel, have direct support for preconditions and postconditions. You can declare

them and have the runtime system verify them for you. Neither C++ nor Java has such a feature. In these lan-
guages, we must manually consider the preconditions and postcondition of each method and make sure that
Meyer’s rule is not violated. Moreover, it can be very helpful to document these preconditions and postconditions
in the comments for each method.

Specifying Contracts in Unit Tests

Contracts can also be specified by writing unit tests. By thoroughly testing the behavior of a class, the unit tests
make the behavior of the class clear. Authors of client code will want to review the unit tests so that they know
what to reasonably assume about the classes they are using.

A Real Example
Enough of squares and rectangles! Does the LSP have a bearing on real software? Let’s look at a case study that
comes from a project that I worked on a few years ago.

6. [Meyer97], Chapter 11, p. 331.

7. [Meyer97], p. 573, Assertion Redeclaration rule (1).

8. The term “weaker” can be confusing. X is weaker than Y if X does not enforce all the constraints of Y. It does not matter how many
new constraints X enforces.

117
www.EBooksWorld.ir

Chapter 10 • LSP: The Liskov Substitution Principle

Motivation

In the early 1990s, I purchased a third-party class library that had some container classes. The containers were
roughly related to the Bags and Sets of Smalltalk. There were two varieties of Set and two similar varieties of
Bag. The first variety was called “bounded” and was based on an array. The second was called “unbounded” and
was based on a linked list.

The constructor for BoundedSet specified the maximum number of elements the set could hold. The space
for these elements was preallocated as an array within the BoundedSet. Thus, if the creation of the BoundedSet
succeeded, we could be sure that it had enough memory. Since it was based on an array, it was very fast. There
were no memory allocations performed during normal operation. And since the memory was preallocated, we
could be sure that operating the BoundedSet would not exhaust the heap. On the other hand, it was wasteful of
memory since it would seldom completely utilize all the space that it had preallocated.

UnboundedSet, on the other hand, had no declared limit on the number of elements it could hold. So long
as there was heap memory avaliable, the UnboundedSet would continue to accept elements. Therefore, it was
very flexible. It was also economical in that it only used the memory necessary to hold the elements that it cur-
rently contained. It was also slow because it had to allocate and deallocate memory as part of its normal operation.
Finally, there was a danger that its normal operation could exhaust the heap.

I was unhappy with the interfaces of these third-party classes. I did not want my application code to be
dependent on them because I felt that I would want to replace them with better classes later. Thus, I wrapped the
third-party containers in my own abstract interface as shown in Figure 10-2.

I created an abstract class called Set that presented pure virtual Add, Delete, and IsMember functions, as
shown in Listing 10-4. This structure unified the unbounded and bounded varieties of the two third-party sets and
allowed them to be accessed through a common interface. Thus, some client could accept an argument of type
Set<T>& and would not care whether the actual Set it worked on was of the bounded or unbounded variety.
(See the PrintSet function in Listing 10-5.)

Listing 10-4
Abstract Set Class

template <class T>
class Set
{
 public:
 virtual void Add(const T&) = 0;
 virtual void Delete(const T&) = 0;
 virtual bool IsMember(const T&) const = 0;
};

Figure 10-2 Container class adapter layer

Third Party
Unbounded Set

Third Party
Bounded Set

Bounded Set

Set

Unbounded Set

118
www.EBooksWorld.ir

A Real Example

Listing 10-5

PrintSet

template <class T>
void PrintSet(const Set<T>& s)
{
 for (Iterator<T>i(s); i; i++
 cout << (*i) << endl;
}

It is a big advantage not to have to know or care what kind of Set you are using. It means that the program-
mer can decide which kind of Set is needed in each particular instance, and none of the client functions will be
affected by that decision. The programmer may choose an UnboundedSet when memory is tight and speed is not
critical, or the programmer may choose an BoundedSet when memory is plentiful and speed is critical. The client
functions will manipulate these objects through the interface of the base class Set and will therefore not know or
care which kind of Set they are using.

Problem

I wanted to add a PersistentSet to this hierarchy. A persistent set is a set that can be written out to a stream and
then read back in later, possibly by a different application. Unfortunately, the only third-party container that I had
access to, that also offered persistence, was not a template class. Instead, it accepted objects that were derived
from the abstract base class PersistentObject. I created the hierarchy shown in Figure 10-3.

Note that PersistentSet contains an instance of the third-party persistent set, to which it delegates all its
methods. Thus, if you call Add on the PersistentSet, it simply delegates that to the appropriate method of the
contained third-party persistent set.

On the surface of it, this might look all right. However, there is an ugly implication. Elements that are added
to the third-party persistent set must be derived from PersistentObject. Since PersistentSet simply dele-
gates to the third-party persistent set, any element added to PersistentSet must therefore derive from
PersistentObject. Yet the interface of Set has no such constraint.

When a client is adding members to the base class Set, that client cannot be sure whether or not the Set
might actually be a PersistentSet. Thus, the client has no way of knowing whether or not the elements it adds
ought to be derived from PersistentObject.

Consider the code for PersistentSet::Add() in Listing 10-6.

Figure 10-3 Persistent Set Hierarchy

PersistentSet

Set

<<delegates>> Third Party
Persistent Set

Persistent
 Object

119
www.EBooksWorld.ir

Chapter 10 • LSP: The Liskov Substitution Principle

Listing 10-6

template <typename T>

void PersistentSet::Add(const T& t)
{
 PersistentObject& p =
 dynamic_cast<PersistentObject&>(t);
 itsThirdPartyPersistentSet.Add(p);
}

This code makes it clear that if any client tries to add an object that is not derived from the class
PersistentObject to my PersistentSet, a runtime error will ensue. The dynamic_cast will throw
bad_cast. None of the existing clients of the abstract base class Set expects exceptions to be thrown on Add.
Since these functions will be confused by a derivative of Set, this change to the hierarchy violates the LSP.

Is this a problem? Certainly. Functions that never before failed when passed a derivative of Set may now
cause runtime errors when passed a PersistentSet. Debugging this kind of problem is relatively difficult since
the runtime error occurs very far away from the actual logic flaw. The logic flaw is either the decision to pass a
PersistentSet into a function or it is the decision to add an object to the PersistentSet that is not derived
from PersistentObject. In either case, the actual decision might be millions of instructions away from the
actual invocation of the Add method. Finding it can be a bear. Fixing it can be worse.

A Solution That Does Not Conform to the LSP

How do we solve this problem? Several years ago, I solved it by convention. Which is to say that I did not solve it
in source code. Rather, I established a convention whereby PersistentSet and PersistentObject were not
known to the application as a whole. They were only known to one particular module. This module was responsi-
ble for reading and writing all the containers to and from the persistent store. When a container needed to be
written, its contents were copied into appropriate derivatives of PersistentObject and then added to
PersistentSets, which were then saved on a stream. When a container needed to be read from a stream, the
process was inverted. A PersistentSet was read from the stream, and then the PersistentObjects were
removed from the PersistentSet and copied into regular (nonpersistent) objects, which were then added to a
regular Set.

This solution may seem overly restrictive, but it was the only way I could think of to prevent PersistentSet
objects from appearing at the interface of functions that would want to add nonpersistent objects to them. Moreover,
it broke the dependency of the rest of the application on the whole notion of persistence.

Did this solution work? Not really. The convention was violated in several parts of the application by devel-
opers who did not understand the necessity for it. That is the problem with conventions—they have to be continu-
ally resold to each developer. If the developer has not learned the convention, or does not agree with it, then the
convention will be violated. And one violation can compromise the whole structure.

An LSP-Compliant Solution

How would I solve this now? I would acknowledge that a PersistentSet does not have an IS-A relationship
with Set, that it is not a proper derivative of Set. Thus, I would separate the hierarchies, but not completely. There
are features that Set and PersistentSet have in common. In fact, it is only the Add method that causes the dif-
ficulty with LSP. Consequently, I would create a hierarchy in which both Set and PersistentSet were siblings
beneath an abstract interface that allowed for membership testing, iteration, etc. (See Figure 10-4.) This would
allow PersistentSet objects to be iterated and tested for membership, etc. But it would not afford the ability to
add objects that were not derived from PersistentObject to a PersistentSet.

120
www.EBooksWorld.ir

Factoring instead of Deriving

Factoring instead of Deriving
Another interesting and puzzling case of inheritance is the case of the Line and the LineSegment.9 Consider
Listings 10-7 and 10-8. These two classes appear, at first, to be natural candidates for public inheritance.
LineSegment needs every member variable and every member function declared in Line. Moreover,
LineSegment adds a new member function of its own, GetLength, and overrides the meaning of the IsOn func-
tion. Yet these two classes violate the LSP in a subtle way.

Listing 10-7

geometry/line.h

#ifndef GEOMETRY_LINE_H
#define GEOMETRY_LINE_H
#include "geometry/point.h"

class Line
{
 public:
 Line(const Point& p1, const Point& p2);

 double GetSlope() const;
 double GetIntercept() const; // Y Intercept
 Point GetP1() const {return itsP1;};
 Point GetP2() const {return itsP2;};
 virtual bool IsOn(const Point&) const;

 private:
 Point itsP1;
 Point itsP2;
};
#endif

Listing 10-8

geometry/lineseg.h

#ifndef GEOMETRY_LINESEGMENT_H
#define GEOMETRY_LINESEGMENT_H
class LineSegment : public Line

Figure 10-4 A solution that is LSP compliant

9. Despite the similarity that this example has to the Square/Rectangle example, it comes from a real application and was subject to the
real problems discussed.

Member
Container

Set

Remove(T)
IsIn(T)

Add(T)

PersistentSet Third Party
Persistent Set

Persistent
Object

Add(T)

121
www.EBooksWorld.ir

Chapter 10 • LSP: The Liskov Substitution Principle

{
 public:
 LineSegment(const Point& p1, const Point& p2);
 double GetLength() const;
 virtual bool IsOn(const Point&) const;
};
#endif

A user of Line has a right to expect that all points that are colinear with it are on it. For example, the point
returned by the Intercept function is the point at which the line intersects the y-axis. Since this point is collinear
with the line, users of Line have a right to expect that IsOn(Intercept()) == true. In many instances of
LineSegment, however, this statement will fail.

Why is this an important issue? Why not simply derive LineSegment from Line and live with the subtle
problems? This is a judgment call. There are rare occasions when it is more expedient to accept a subtle flaw in
polymorphic behavior than to attempt to manipulate the design into complete LSP compliance. Accepting compro-
mise instead of pursuing perfection is an engineering trade-off. A good engineer learns when compromise is more
profitable than perfection. However, conformance to the LSP should not be surrendered lightly. The guarantee that
a subclass will always work where its base classes are used is a powerful way to manage complexity. Once it is for-
saken, we must consider each subclass individually.

In the case of the Line and LineSegment, there is a simple solution that illustrates an important tool of
OOD. If we have access to both the Line and LineSegment classes, then we can factor the common elements of
both into an abstract base class. Listings 10-9 through 10-11 show the factoring of Line and LineSegment into the
base class LinearObject.

Listing 10-9

geometry/linearobj.h

#ifndef GEOMETRY_LINEAR_OBJECT_H
#define GEOMETRY_LINEAR_OBJECT_H

#include "geometry/point.h"

class LinearObject
{
 public:
 LinearObject(const Point& p1, const Point& p2);

 double GetSlope() const;
 double GetIntercept() const;

 Point GetP1() const {return itsP1;};
 Point GetP2() const {return itsP2;};
 virtual int IsOn(const Point&) const = 0; // abstract.

 private:
 Point itsP1;
 Point itsP2;
};
#endif

122
www.EBooksWorld.ir

Factoring instead of Deriving

Listing 10-10

geometry/line.h

#ifndef GEOMETRY_LINE_H
#define GEOMETRY_LINE_H
#include "geometry/linearobj.h"

class Line : public LinearObject
{
 public:
 Line(const Point& p1, const Point& p2);
 virtual bool IsOn(const Point&) const;
};
#endif

Listing 10-11

geometry/lineseg.h

#ifndef GEOMETRY_LINESEGMENT_H
#define GEOMETRY_LINESEGMENT_H
#include "geometry/linearobj.h"

class LineSegment : public LinearObject
{
 public:
 LineSegment(const Point& p1, const Point& p2);

 double GetLength() const;
 virtual bool IsOn(const Point&) const;
};
#endif

LinearObject represents both Line and LineSegment. It provides most of the functionality and data
members for both subclasses, with the exception of the IsOn method, which is pure virtual. Users of
LinearObject are not allowed to assume that they understand the extent of the object they are using. Thus, they
can accept either a Line or a LineSegment with no problem. Moreover, users of Line will never have to deal
with a LineSegment.

Factoring is a design tool that is best applied before there is much code written. Certainly, if there were doz-
ens of clients of the Line class shown in Listing 10-7, we would not have had an easy time of factoring out the
LinearObject class. When factoring is possible, however, it is a powerful tool. If qualities can be factored out of
two subclasses, there is the distinct possibility that other classes will show up later that need those qualities, too.
Of factoring, Rebecca Wirfs–Brock, Brian Wilkerson, and Lauren Wiener say:

We can state that if a set of classes all support a common responsibility, they should inherit that
responsibility from a common superclass.
If a common superclass does not already exist, create one, and move the common responsibilities to it.
After all, such a class is demonstrably useful—you have already shown that the responsibilities will be
inherited by some classes. Isn’t it conceivable that a later extension of your system might add a new
subclass that will support those same responsibilities in a new way? This new superclass will probably
be an abstract class.10

10. [WirfsBrock90], p. 113.

123
www.EBooksWorld.ir

Chapter 10 • LSP: The Liskov Substitution Principle

Listing 10-12 shows how the attributes of LinearObject can be used by an unanticipated class, Ray. A Ray
is substitutable for a LinearObject, and no user of LinearObject would have any trouble dealing with it.

Listing 10-12

geometry/ray.h

#ifndef GEOMETRY_RAY_H
#define GEOMETRY_RAY_H

class Ray : public LinearObject
{
 public:
 Ray(const Point& p1, const Point& p2);
 virtual bool IsOn(const Point&) const;
};
#endif

Heuristics and Conventions
There are some simple heuristics that can give you some clues about LSP violations. They all have to do with
derivative classes that somehow remove functionality from their base classes. A derivative that does less than its
base is usually not substitutable for that base, and therefore violates the LSP.

Degenerate Functions in Derivatives

Consider Listing 10-13. The f function in Base is implemented. However, in Derived it is degenerate. Presum-
ably, the author of Derived found that function f had no useful purpose in a Derived. Unfortunately, the users of
Base don’t know that they shouldn’t call f, so there is a substitution violation.

Listing 10-13

A degenerate function in a derivative

public class Base
{
 public void f() {/*some code*/}
}

public class Derived extends Base
{
 public void f() {}
}

The presence of degenerate functions in derivatives is not always indicative of an LSP violation, but it’s
worth looking at them when they occur.

Throwing Exceptions from Derivatives

Another form of violation is the addition of exceptions to methods of derived classes whose bases don’t throw
them. If the users of the base classes don’t expect exceptions, then adding them to the methods of derivatives is not
substitutable. Either the expectations of the users must be altered or the derived classes should not throw the
exceptions.

124
www.EBooksWorld.ir

Conclusion

Conclusion
The OCP is at the heart of many of the claims made for OOD. When this principle is in effect, applications are
more maintainable, reusable, and robust. The LSP is one of the prime enablers of the OCP. It is the substitutability
of subtypes that allows a module, expressed in terms of a base type, to be extensible without modification. That
substitutability must be something that developers can depend on implicitly. Thus, the contract of the base type has
to be well and prominently understood, if not explicitly enforced, by the code.

The term “IS-A” is too broad to act as a definition of a subtype. The true definition of a subtype is “substitut-
able,” where substitutability is defined by either an explicit or implicit contract.

Bibliography

1. Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. Upper Saddle River, NJ: Prentice Hall, 1997.
2. Wirfs–Brock, Rebecca, et al. Designing Object-Oriented Software. Englewood Cliffs, NJ: Prentice Hall, 1990.
3. Liskov, Barbara. Data Abstraction and Hierarchy. SIGPLAN Notices, 23,5 (May 1988).

125
www.EBooksWorld.ir

126
www.EBooksWorld.ir

11

DIP: The Dependency-Inversion
Principle

Nevermore
Let the great interests of the State depend

Upon the thousand chances that may sway
A piece of human frailty

—Sir Thomas Noon Talfourd (1795–1854)

DIP: The Dependency-Inversion Principle

a. High-level modules should not depend on low-level modules. Both should depend on abstractions.
b. Abstractions should not depend on details. Details should depend on abstractions.

Over the years, many have questioned why I use the word “inversion” in the name of this principle. It is because
more traditional software development methods, such as Structured Analysis and Design, tend to create soft-
ware structures in which high-level modules depend on low-level modules, and in which policy depends on
detail. Indeed one of the goals of these methods is to define the subprogram hierarchy that describes how the
high-level modules make calls to the low-level modules. The initial design of the Copy program in Figure 7-1
on page 90 is a good example of such a hierarchy. The dependency structure of a well-designed, object-oriented
program is “inverted” with respect to the dependency structure that normally results from traditional procedural
methods.

Consider the implications of high-level modules that depend on low-level modules. It is the high-level
modules that contain the important policy decisions and business models of an application. These modules

From Chapter 11 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

127
www.EBooksWorld.ir

Chapter 11 • DIP: The Dependency-Inversion Principle

contain the identity of the application. Yet, when these modules depend on the lower level modules, changes to
the lower level modules can have direct effects on the higher level modules and can force them to change
in turn.

This predicament is absurd! It is the high-level, policy-setting modules that ought to be influencing the low-
level, detailed modules. The modules that contain the high-level business rules should take precedence over, and
be independent of, the modules that contain the implementation details. High-level modules simply should not
depend on low-level modules in any way.

Moreover, it is high-level, policy-setting modules that we want to be able to reuse. We are already quite good
at reusing low-level modules in the form of subroutine libraries. When high-level modules depend on low-level
modules, it becomes very difficult to reuse those high-level modules in different contexts. However, when the
high-level modules are independent of the low-level modules, then the high-level modules can be reused quite sim-
ply. This principle is at the very heart of framework design.

Layering
According to Booch, “...all well-structured object-oriented architectures have clearly defined layers, with each
layer providing some coherent set of services though a well-defined and controlled interface.”1 A naive interpre-
tation of this statement might lead a designer to produce a structure similar to Figure 11-1. In this diagram, the
high-level Policy layer uses a lower-level Mechanism layer, which in turn uses a detailed-level Utility
layer. While this may look appropriate, it has the insidious characteristic that the Policy layer is sensitive to
changes all the way down in the Utility layer. Dependency is transitive. The Policy layer depends on some-
thing that depends on the Utility layer; thus, the Policy layer transitively depends on the Utility layer.
This is very unfortunate.

Figure 11-2 shows a more appropriate model. Each of the upper-level layers declares an abstract interface
for the services that it needs. The lower-level layers are then realized from these abstract interfaces. Each higher-
level class uses the next-lowest layer through the abstract interface. Thus, the upper layers do not depend on the
lower layers. Instead, the lower layers depend on abstract service interfaces declared in the upper layers. Not only
is the transitive dependency of PolicyLayer on UtilityLayer broken, but even the direct dependency of the
PolicyLayer on MechanismLayer is broken.

An Inversion of Ownership

Notice that the inversion here is not just one of dependencies, it is also one of interface ownership. We often think
of utility libraries as owning their own interfaces. But when the DIP is applied, we find that the clients tend to own
the abstract interfaces and that their servers derive from them.

1. [Booch96], p. 54.

Figure 11-1 Naive layering scheme

Policy Layer

Mechanism
Layer

Utility Layer

128
www.EBooksWorld.ir

Layering

This is sometimes known as the Hollywood principle: “Don’t call us, we’ll call you.”2 The lower-level mod-
ules provide the implementation for interfaces that are declared within, and called by, the upper-level modules.

Using this inversion of ownership, PolicyLayer is unaffected by any changes to MechanismLayer or
UtilityLayer. Moreover, PolicyLayer can be reused in any context that defines lower-level modules that con-
form to the PolicyServiceInterface. Thus, by inverting the dependencies, we have created a structure, which
is simultaneously more flexible, durable, and mobile.

Depend On Abstractions

A somewhat more naive, yet still very powerful, interpretation of the DIP is the simple heuristic: “Depend on
abstractions.” Simply stated, this heuristic recommends that you should not depend on a concrete class—that all
relationships in a program should terminate on an abstract class or an interface.

According to this heuristic,

• No variable should hold a pointer or reference to a concrete class.
• No class should derive from a concrete class.
• No method should override an implemented method of any of its base classes.

Certainly this heuristic is usually violated at least once in every program. Somebody has to create the
instances of the concrete classes, and whatever module does that will depend on them.3 Moreover, there seems no
reason to follow this heuristic for classes that are concrete but nonvolatile. If a concrete class is not going to
change very much, and no other similar derivatives are going to be created, then it does very little harm to depend
on it.

Figure 11-2 Inverted Layers

2. [Sweet85].

3. Actually, there are ways around this if you can use strings to create classes. Java allows this. So do several other languages. In such lan-
guages, the names of the concrete classes can be passed into the program as configuration data.

Policy Layer

Mechanism
Layer

Utility
Layer

Policy Service
Interface

«interface»

Mechanism
Service

Interface

«interface»

Policy

Mechanism

Utility

129
www.EBooksWorld.ir

Chapter 11 • DIP: The Dependency-Inversion Principle

For example, in most systems the class that describes a string is concrete. In Java, for example, it is the con-
crete class String. This class is not volatile. That is, it does not change very often. Therefore it does no harm to
depend directly on it.

However, most concrete classes that we write as part of an application program are volatile. It is those con-
crete classes that we do not want to depend directly on. Their volatility can be isolated by keeping them behind an
abstract interface.

This is not a complete solution. There are times when the interface of a volatile class must change, and this
change must be propagated to the abstract interface that represents the class. Such changes break through the iso-
lation of the abstract interface.

This is the reason that the heuristic is a bit naive. If, on the other hand, we take the longer view that the client
classes declare the service interfaces that they need, then the only time the interface will change is when the client
needs the change. Changes to the classes that implement the abstract interface will not affect the client.

A Simple Example
Dependency inversion can be applied wherever one class sends a message to another. For example, consider the
case of the Button object and the Lamp object.

The Button object senses the external environment. On receiving the Poll message, it determines whether
or not a user has “pressed” it. It doesn’t matter what the sensing mechanism is. It could be a button icon on a GUI,
a physical button being pressed by a human finger, or even a motion detector in a home security system. The
Button object detects that a user has either activated or deactivated it.

The Lamp object affects the external environment. On receiving a TurnOn message, it illuminates a light of
some kind. On receiving a TurnOff message, it extinguishes that light. The physical mechanism is unimportant. It
could be an LED on a computer console, a mercury vapor lamp in a parking lot, or even the laser in a laser printer.

How can we design a system such that the Button object controls the Lamp object? Figure 11-3 shows a
naive design. The Button object receives Poll messages, determines if the button has been pressed, and then
simply sends the TurnOn or TurnOff message to the Lamp.

Why is this naive? Consider the Java code that is implied by this model (Listing 11-1). Note that the Button
class depends directly on the Lamp class. This dependency implies that Button will be affected by changes to
Lamp. Moreover, it will not be possible to reuse Button to control a Motor object. In this design, Button objects
control Lamp objects, and only Lamp objects.

Listing 11-1

Button.java

public class Button
{
 private Lamp itsLamp;
 public void poll()
 {
 if (/*some condition*/)
 itsLamp.turnOn();
 }
}

Figure 11-3 Naive Model of a Button and a Lamp

Button

+ Poll()

Lamp

+ TurnOn()
+ TurnOff()

130
www.EBooksWorld.ir

A Simple Example

This solution violates the DIP. The high-level policy of the application has not been separated from the low-
level implementation. The abstractions have not been separated from the details. Without such a separation, the
high-level policy automatically depends on the low-level modules, and the abstractions automatically depend on
the details.

Finding the Underlying Abstraction

What is the high-level policy? It is the abstraction that underlies the application, the truths that do not vary when
the details are changed. It is the system inside the system—it is the metaphor. In the Button/Lamp example, the
underlying abstraction is to detect an on/off gesture from a user and relay that gesture to a target object. What
mechanism is used to detect the user gesture? Irrelevant! What is the target object? Irrelevant! These are details
that do not impact the abstraction.

The design in Figure 11-3 can be improved by inverting the dependency on the Lamp object. In Figure 11-4,
we see that the Button now holds an association to something called a ButtonServer. ButtonServer provides
abstract methods that Button can use to turn something on or off. Lamp implements the ButtonServer interface.
Thus, Lamp is now doing the depending, rather than being depended on.

The design in Figure 11-4 allows a Button to control any device that is willing to implement the
ButtonServer interface. This gives us a great deal of flexibility. It also means that Button objects will be able to
control objects that have not yet been invented.

However, this solution also puts a constraint on any object that needs to be controlled by a Button. Such an
object must implement the ButtonServer interface. This is unfortunate because these objects may also want to
be controlled by a Switch object or some object other than a Button.

By inverting the direction of the dependency and making the Lamp do the depending instead of being
depended on, we have made Lamp depend on a different detail—Button. Or have we?

Lamp certainly depends on ButtonServer, but ButtonServer does not depend on Button. Any kind of
object that knows how to manipulate the ButtonServer interface will be able to control a Lamp. Thus, the depen-
dency is in name only. And we can fix that by changing the name of ButtonServer to something a bit more
generic like SwitchableDevice. We can also ensure that Button and SwitchableDevice are kept in separate
libraries, so that the use of SwitchableDevice does not imply the use of Button.

In this case, nobody owns the interface. We have the interesting situation where the interface can be used by
lots of different clients and implemented by lots of different servers. Thus, the interface needs to stand alone with-
out belonging to either group. In C++, we would put it in a separate namespace and library. In Java we would put
it in a separate package.4

Figure 11-4 Dependency Inversion Applied to the Lamp

4. In dynamic languages like Smalltalk, Pyrhon, or Ruby, the interface simply wouldn’t exist as an explicit source-code entity.

+ turnOff()
+ turnOn()

«interface»
ButtonServer

+ poll()

Button

Lamp

131
www.EBooksWorld.ir

Chapter 11 • DIP: The Dependency-Inversion Principle

The Furnace Example
Let’s look at a more interesting example. Consider the software that might
control the regulator of a furnace. The software can read the current tempera-
ture from an IO channel and instruct the furnace to turn on or off by sending
commands to a different IO channel. The structure of the algorithm might look
something like Listing 11-2.

Listing 11-2

Simple algorithm for a thermostat

#define TERMOMETER 0x86
#define FURNACE 0x87
#define ENGAGE 1
#define DISENGAGE 0

void Regulate(double minTemp, double maxTemp)
{
 for(;;)
 {
 while (in(THERMOMETER) > minTemp)
 wait(1);
 out(FURNACE,ENGAGE);

 while (in(THERMOMETER) < maxTemp)
 wait(1);
 out(FURNACE,DISENGAGE);
 }
}

The high-level intent of the algorithm is clear, but the code is cluttered with lots of low-level details. This
code could never be reused with different control hardware.

This may not be much of a loss since the code is very small. But even so, it is a shame to have the algorithm
lost for reuse. We’d rather invert the dependencies and see something like Figure 11-5.

This shows that the regulate function takes two arguments that are both interfaces. The Thermometer inter-
face can be read, and the Heater interface can be engaged and disengaged. This is all the Regulate algorithm
needs. Now it can be written as shown in Listing 11-3.

Figure 11-5 Generic Regulator

«function»

«parameter» «parameter»
Regulate

IO Channel
Thermometer

IO Channel
Heater

«interface»
Thermometer

«interface»
Heater

+ read() + engage()
+ disengage()

132
www.EBooksWorld.ir

The Furnace Example

Listing 11-3

Generic Regulator

void Regulate(Thermometer& t, Heater& h,
 double minTemp, double maxTemp)
{
 for(;;)
 {
 while (t.Read() > minTemp)
 wait(1);
 h.Engage();

 while (t.Read() < maxTemp)
 wait(1);
 h.Disengage();
 }
}

This has inverted the dependencies such that the high-level regulation policy does not depend on any of the
specific details of the thermometer or the furnace. The algorithm is nicely reusable.

Dynamic v. Static Polymorphism

We have achieved the inversion of the dependencies, and made Regulate generic, through the use of dynamic
polymorphism (i.e., abstract classes or interfaces). However, there is another way. We could have used the static
form of polymorphism afforded by C++ templates. Consider Listing 11-4.

Listing 11-4
template <typename THERMOMETER, typename HEATER>
class Regulate(THERMOMETER& t, HEATER& h,
 double minTemp, double maxTemp)
{
 for(;;)
 {
 while (t.Read() > minTemp)
 wait(1);
 h.Engage();

 while (t.Read() < maxTemp)
 wait(1);
 h.Disengage();
 }
}

This achieves the same inversion of dependencies without the overhead (or flexibility) of dynamic polymor-
phism. In C++, the Read, Engage, and Disengage methods could all be nonvirtual. Moreover, any class that
declares these methods can be used by the template. They do not have to inherit from a common base.

As a template, Regulate does not depend on any particular implementation of these functions. All that is
required is that the class substituted for HEATER have an Engage and a Disengage method and that the class sub-
stituted for THERMOMETER have a Read function. Thus, those classes must implement the interface defined by the
template. In other words, both Regulate, and the classes that Regulate uses, must agree on the same interface,
and they both depend on that agreement.

133
www.EBooksWorld.ir

Chapter 11 • DIP: The Dependency-Inversion Principle

Static polymorphism breaks the source-code dependency nicely, but it does not solve as many problems as
does dynamic polymorphism. The disadvantages of the template approach are (1) The types of HEATER and
THERMOMETER cannot be changed at runtime; and (2) The use of a new kind of HEATER or THERMOME-
TER will force recompilation and redeployment. So unless you have an extremely stringent requirement for speed,
dynamic polymorphism should be preferred.

Conclusion
Traditional procedural programming creates a dependency structure in which policy depends on detail. This is
unfortunate since the policies are then vulnerable to changes in the details. Object-oriented programming inverts
that dependency structure such that both details and policies depend on abstraction, and service interfaces are often
owned by their clients.

Indeed, it is this inversion of dependencies that is the hallmark of good object-oriented design. It doesn’t
matter what language a program is written in. If its dependencies are inverted, it has an OO design. If its dependen-
cies are not inverted, it has a procedural design.

The principle of dependency inversion is the fundamental low-level mechanism behind many of the benefits
claimed for object-oriented technology. Its proper application is necessary for the creation of reusable frameworks.
It is also critically important for the construction of code that is resilient to change. Since the abstractions and
details are all isolated from each other, the code is much easier to maintain.

Bibliography

1. Booch, Grady. Object Solutions. Menlo Park, CA: Addison–Wesley, 1996.
2. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.
3. Sweet. Richard E. The Mesa Programming Environment. SIGPLAN Notices, 20(7) (July 1985): 216–229.

134
www.EBooksWorld.ir

12

ISP: The Interface-Segregation
Principle

This principle deals with the disadvantages of “fat” interfaces. Classes that have “fat” interfaces are classes whose
interfaces are not cohesive. In other words, the interfaces of the class can be broken up into groups of methods.
Each group serves a different set of clients. Thus, some clients use one group of member functions, and other cli-
ents use the other groups.

The ISP acknowledges that there are objects that require noncohesive interfaces; however, it suggests that
clients should not know about them as a single class. Instead, clients should know about abstract base classes that
have cohesive interfaces.

Interface Pollution
Consider a security system. In this system, there are Door objects that can be locked and unlocked, and which
know whether they are open or closed. (See Listing 12-1.)

Listing 12-1
Security Door
class Door
{
 public:
 virtual void Lock() = 0;
 virtual void Unlock() = 0;
 virtual bool IsDoorOpen() = 0;
};

This class is abstract so that clients can use objects that conform to the Door interface, without having to
depend on particular implementations of Door.

Now consider that one such implementation, TimedDoor, needs to sound an alarm when the door has been
left open for too long. In order to do this, the TimedDoor object communicates with another object called a
Timer. (See Listing 12-2.)

From Chapter 12 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

135
www.EBooksWorld.ir

Chapter 12 • ISP: The Interface-Segregation Principle

Listing 12-2
class Timer
{
 public:
 void Register(int timeout, TimerClient* client);
};

class TimerClient
{
 public:
 virtual void TimeOut() = 0;
};

When an object wishes to be informed about a time-out, it calls the Register function of the Timer. The
arguments of this function are the time of the time-out, and a pointer to a TimerClient object whose TimeOut
function will be called when the time-out expires.

How can we get the TimerClient class to communicate with the TimedDoor class so that the code in the
TimedDoor can be notified of the time-out? There are several alternatives. Figure 12-1 shows a naive solution. We
force Door, and therefore TimedDoor, to inherit from TimerClient. This ensures that TimerClient can regis-
ter itself with the Timer and receive the TimeOut message.

Although this solution is common, it is not without problems. Chief among these is that the Door class now
depends on TimerClient. Not all varieties of Door need timing. Indeed, the original Door abstraction had noth-
ing whatever to do with timing. If timing-free derivatives of Door are created, those derivatives will have to pro-
vide degenerate implementations for the TimeOut method—a potential violation of the LSP. Moreover, the
applications that use those derivatives will have to import the definition of the TimerClient class, even though it
is not used. That smells of Needless Complexity and Needless Redundancy.

This is an example of interface pollution, a syndrome that is common in statically typed languages like C++
and Java. The interface of Door has been polluted with a method that it does not require. It has been forced to
incorporate this method solely for the benefit of one of its subclasses. If this practice is pursued, then every time a
derivative needs a new method, that method will be added to the base class. This will further pollute the interface
of the base class, making it “fat.”

Moreover, each time a new method is added to the base class, that method must be implemented (or allowed to
default) in derived classes. Indeed, an associated practice is to add these interfaces to the base class giving them
degenerate implementations, specifically so that derived classes are not burdened with the need to implement them.
As we learned previously, such a practice can violate the LSP, leading to maintenance and reusability problems.

Figure 12-1 Timer Client at Top of Hierarchy

Timer

Door

Timed Door

0..*

«interface»
Timer Client

+ Timeout

136
www.EBooksWorld.ir

ISP: The Interface-Segregation Principle

Separate Clients Mean Separate Interfaces
Door and TimerClient represent interfaces that are used by completely different clients. Timer uses
TimerClient, and classes that manipulate doors use Door. Since the clients are separate, the interfaces should
remain separate, too. Why? Because clients exert forces on the interfaces they use.

The Backwards Force Applied by Clients On Interfaces

When we think of forces that cause changes in software, we normally think about how changes to interfaces will
affect their users. For example, we would be concerned about the changes to all the users of TimerClient if the
TimerClient interface changed. However, there is a force that operates in the other direction. Sometimes it is the
user that forces a change to the interface.

For example, some users of Timer will register more than one time-out request. Consider the TimedDoor.
When it detects that the Door has been opened, it sends the Register message to the Timer, requesting a time-
out. However, before that time-out expires, the door closes, remains closed for a while, and then opens again. This
causes us to register a new time-out request before the old one has expired. Finally, the first time-out request
expires and the TimeOut function of the TimedDoor is invoked. The Door alarms falsely.

We can correct this situation by using the convention shown in Listing 12-3. We include a unique
timeOutId code in each time-out registration, and we repeat that code in the TimeOut call to the TimerClient.
This allows each derivative of TimerClient to know which time-out request is being responded to.

Listing 12-3
Timer with ID
class Timer
{
 public:
 void Register(int timeout,
 int timeOutId,
 TimerClient* client);
};

class TimerClient
{
 public:
 virtual void TimeOut(int timeOutId) = 0;
};

Clearly this change will affect all the users of TimerClient. We accept this since the lack of the
timeOutId is an oversight that needs correction. However, the design in Figure 12-1 will also cause Door, and all
clients of Door to be affected by this fix! This smells of Rigidity and Viscosity. Why should a bug in TimerClient
have any affect on clients of Door derivatives that do not require timing? When a change in one part of the pro-
gram affects other completely unrelated parts of the program, the cost and repercussions of changes become
unpredictable, and the risk of fallout from the change increases dramatically.

ISP: The Interface-Segregation Principle

Clients should not be forced to depend on methods that they do not use.

When clients are forced to depend on methods that they don’t use, then those clients are subject to changes to those
methods. This results in an inadvertent coupling between all the clients. Said another way, when a client depends
on a class that contains methods that the client does not use, but that other clients do use, then that client will be

137
www.EBooksWorld.ir

Chapter 12 • ISP: The Interface-Segregation Principle

affected by the changes that those other clients force upon the class. We would like to avoid such couplings where
possible, and so we want to separate the interfaces.

Class Interfaces v. Object Interfaces
Consider the TimedDoor again. Here is an object which has two separate interfaces used by two separate clients—
Timer and the users of Door. These two interfaces must be implemented in the same object, since the implemen-
tation of both interfaces manipulates the same data. So how can we conform to the ISP? How can we separate the
interfaces when they must remain together?

The answer to this lies in the fact that clients of an object do not need to access it through the interface of the
object. Rather, they can access it through delegation or through a base class of the object.

Separation through Delegation

One solution is to create an object that derives from TimerClient and delegates to the TimedDoor. Figure 12-2
shows this solution.

When the TimedDoor wants to register a time-out request with the Timer, it creates a DoorTimerAdapter
and registers it with the Timer. When the Timer sends the TimeOut message to the DoorTimerAdapter, the
DoorTimerAdapter delegates the message back to the TimedDoor.

This solution conforms to the ISP and prevents the coupling of Door clients to Timer. Even if the change to
Timer shown in Listing 12-3 were to be made, none of the users of Door would be affected. Moreover,
TimedDoor does not have to have the exact same interface as TimerClient. The DoorTimerAdapter can
translate the TimerClient interface into the TimedDoor interface. Thus, this is a very general purpose solution.
(See Listing 12-4.)

Listing 12-4

TimedDoor.cpp

class TimedDoor : public Door
{
 public:
 virtual void DoorTimeOut(int timeOutId);
};

class DoorTimerAdapter : public TimerClient
{
 public:
 DoorTimerAdapter(TimedDoor& theDoor)

Figure 12-2 Door Timer Adapter

Timer
0..*

«interface»

«creates»

Timer Client

+ Timeout

Door Timer
Adapter

+ Timeout() + DoorTimeOut

Door

Timed Door

138
www.EBooksWorld.ir

The ATM User Interface Example

 : itsTimedDoor(theDoor)
 {}

 virtual void TimeOut(int timeOutId)
 {itsTimedDoor.DoorTimeOut(timeOutId);}

 private:
 TimedDoor& itsTimedDoor;
};

However, this solution is also somewhat inelegant. It involves the creation of a new object every time we
wish to register a time-out. Moreover, the delegation requires a very small, but still nonzero, amount of runtime
and memory. There are application domains, such as embedded real-time control systems, in which runtime and
memory are scarce enough to make this a concern.

Separation through Multiple Inheritance

Figure 12-3 and Listing 12-5 show how multiple inheritance can be used to achieve the ISP. In this model,
TimedDoor inherits from both Door and TimerClient. Although clients of both base classes can make use of
TimedDoor, neither actually depends on the TimedDoor class. Thus, they use the same object through separate
interfaces.

Listing 12-5
TimedDoor.cpp

class TimedDoor : public Door, public TimerClient
{
 public:
 virtual void TimeOut(int timeOutId);
};

This solution is my normal preference. The only time I would choose the solution in Figure12-2 over Figure
12-3 is if the translation performed by the DoorTimerAdapter object were necessary, or if different translations
were needed at different times.

The ATM User Interface Example
Now let’s consider a slightly more significant example. The traditional automated
teller machine (ATM) problem. The user interface of an ATM machine needs to be
very flexible. The output may need to be translated into many different languages.
It may need to be presented on a screen, or on a braille tablet, or spoken out a
speech synthesizer. Clearly this can be achieved by creating an abstract base class
that has abstract methods for all the different messages that need to be presented by
the interface.

Figure 12-3 Multiply inherited Timed Door

Timer
0..*

«interface»
Timer Client

+ Timeout

+ TimeOut

Door

Timed Door

139
www.EBooksWorld.ir

Chapter 12 • ISP: The Interface-Segregation Principle

Consider also that each different transaction that the ATM can perform is encapsulated as a derivative of the
class Transaction. Thus, we might have classes such as DepositTransaction, WithdrawalTransaction,
and TransferTransaction. Each class invokes methods of the UI. For example, in order to ask the user to enter
the amount he wishes to deposit, the DepositTransaction object invokes the RequestDepositAmount method
of the UI class. Likewise, in order to ask the user how much money he wants to transfer between accounts, the
TransferTransaction object calls the RequestTransferAmount method of UI. This corresponds to the dia-
gram in Figure 12-5.

Notice that this is precisely the situation that the ISP tells us to avoid. Each transaction is using
methods of the UI that no other class uses. This creates the possibility that changes to one of the derivatives
of Transaction will force corresponding change to the UI, thereby affecting all the other derivatives of
Transaction and every other class that depends on the UI interface. Something smells like Rigidity and
Fragility around here.

For example, if we were to add a PayGasBillTransaction, we would have to add new methods to UI in
order to deal with the unique messages that this transaction would want to display. Unfortunately, since
DepositTransaction, WithdrawalTransaction, and TransferTransaction all depend on the UI inter-
face, they must all be recompiled. Worse, if the transactions were all deployed as components in separate DLLs or
shared libraries, then those components would have to be redeployed, even though none of their logic was
changed. Can you smell the Viscosity?

Figure 12-4

Figure 12-5 ATM Transaction Hierarchy

Braille UIScreen UI Speech UI

ATM UI
«interface»

{abstract}
+ Execute()

Transaction

Deposit
Transaction

Withdrawal
Transaction

UI

Transfer
Transaction

«interface»

+ RequestDepositAmount()
+ RequestWithdrawalAmount()
+ RequestTransferAmount()
+ InformInsufficientFunds()

140
www.EBooksWorld.ir

The ATM User Interface Example

This unfortunate coupling can be avoided by segregating the UI interface into individual interfaces such as
DepositUI, WithdrawUI, and TransferUI. These separate interfaces can then be multiply inherited into the
final UI interface. Figure 12-6 and Listing 12-6 show this model.

Whenever a new derivative of the Transaction class is created, a corresponding base class for the abstract
UI interface will be needed, and so the UI interface and all its derivatives must change. However, these classes are
not widely used. Indeed, they are probably only used by main or whatever process boots the system and creates
the concrete UI instance. So the impact of adding new UI base classes is minimized.

Listing 12-6

Segregated ATM UI Interface

class DepositUI
{
 public:
 virtual void RequestDepositAmount() = 0;
};

class DepositTransaction : public Transaction
{
 public:
 DepositTransaction(DepositUI& ui)
 : itsDepositUI(ui)
 {}

 virtual void Execute()
 {
 ...
 itsDepositUI.RequestDepositAmount();

Figure 12-6 Segregated ATM UI Interface

{abstract}
+ Execute()

Transaction

Deposit
Transaction

Withdrawal
Transaction

Withdrawal UI

Transfer
Transaction

«interface»

+ RequestWithdrawalAmount()
+ InformInsufficientFunds()

Deposit UI
«interface»

+ RequestDepositAmount()

Transfer UI
«interface»

+ RequestTransferAmount()

UI
«interface»

+ RequestDepositAmount()
+ RequestWithdrawalAmount()
+ RequestTransferAmount()
+ InformInsufficientFunds()

141
www.EBooksWorld.ir

Chapter 12 • ISP: The Interface-Segregation Principle

 ...
 }
 private:
 DepositUI& itsDepositUI;
};

class WithdrawalUI
{
 public:
 virtual void RequestWithdrawalAmount() = 0;
};

class WithdrawalTransaction : public Transaction
{
 public:
 WithdrawalTransaction(WithdrawalUI& ui)
 : itsWithdrawalUI(ui)
 {}

 virtual void Execute()
 {
 ...
 itsWithdrawalUI.RequestWithdrawalAmount();
 ...
 }
 private:
 WithdrawalUI& itsWithdrawalUI;
};

class TransferUI
{
 public:
 virtual void RequestTransferAmount() = 0;
};

class TransferTransaction : public Transaction
{
 public:
 TransferTransaction(TransferUI& ui)
 : itsTransferUI(ui)
 {}

 virtual void Execute()
 {
 ...
 itsTransferUI.RequestTransferAmount();
 ...
 }
 private:
 TransferUI& itsTransferUI;
};

class UI : public DepositUI
 , public WithdrawalUI
 , public TransferUI

142
www.EBooksWorld.ir

The ATM User Interface Example

{
 public:
 virtual void RequestDepositAmount();
 virtual void RequestWithdrawalAmount();
 virtual void RequestTransferAmount();
};

A careful examination of Listing 12-6 will show one of the issues with ISP conformance that was not obvi-
ous from the TimedDoor example. Note that each transaction must somehow know about its particular version of
the UI. DepositTransaction must know about DepositUI, WithdrawTransaction must know about
WithdrawUI, etc. In Listing 12-6, I have addressed this issue by forcing each transaction to be constructed with a
reference to its particular UI. Note that this allows me to employ the idiom in Listing 12-7.

Listing 12-7

Interface Initialization Idiom

UI Gui; // global object;

void f()
{
 DepositTransaction dt(Gui);
}

This is handy, but it also forces each transaction to contain a reference member to its UI. Another way to
address this issue is to create a set of global constants as shown in Listing 12-8. Global variables are not always a
symptom of a poor design. In this case they provide the distinct advantage of easy access. Since they are refer-
ences, it is impossible to change them in any way. Therefore they cannot be manipulated in a way that would sur-
prise other users.

Listing 12-8

Seperate Global Pointers

// in some module that gets linked in
// to the rest of the app.

static UI Lui; // non-global object;
DepositUI& GdepositUI = Lui;
WithdrawalUI& GwithdrawalUI = Lui;
TransferUI& GtransferUI = Lui;

// In the depositTransaction.h module

class WithdrawalTransaction : public Transaction
{
 public:

 virtual void Execute()
 {
 ...
 GwithdrawalUI.RequestWithdrawalAmount();
 ...
 }
};

143
www.EBooksWorld.ir

Chapter 12 • ISP: The Interface-Segregation Principle

In C++, one might be tempted to put all the globals in Listing 12-8 into a single class in order to prevent pol-
lution of the global namespace. Listing 12-9 shows such an approach. This, however, has an unfortunate effect. In
order to use UIGlobals, you must #include ui_globals.h. This, in turn, #includes depositUI.h,
withdrawUI.h, and transferUI.h. This means that any module wishing to use any of the UI interfaces transi-
tively depends on all of them— exactly the situation that the ISP warns us to avoid. If a change is made to any of
the UI interfaces, all modules that #include "ui_globals.h" are forced to recompile. The UIGlobals class
has recombined the interfaces that we had worked so hard to segregate!

Listing 12-9

Wrapping the Globals in a class

// in ui_globals.h

#include "depositUI.h"
#include "withdrawalUI.h"
#include "transferUI.h"

class UIGlobals
{
 public:
 static WithdrawalUI& withdrawal;
 static DepositUI& deposit;
 static TransferUI& transfer
};

// in ui_globals.cc

static UI Lui; // non-global object;
DepositUI& UIGlobals::deposit = Lui;
WithdrawalUI& UIGlobals::withdrawal = Lui;
TransferUI& UIGlobals::transfer = Lui;

The Polyad v. the Monad

Consider a function g that needs access to both the DepositUI and the TransferUI. Consider also that we wish
to pass the UIs into this function. Should we write the function prototype like this?

void g(DepositUI&, TransferUI&);

Or should we write it like this?

void g(UI&);

The temptation to write the latter (monadic) form is strong. After all, we know that in the former (polyadic)
form, both arguments will refer to the same object. Moreover, if we were to use the polyadic form, its invocation
might look like this:

g(ui, ui);

Somehow, this seems perverse.
Perverse or not, the polyadic form is often preferable to the monadic form. The monadic form forces g to

depend on every interface included in UI. Thus, when WithdrawUI changes, g and all clients of g could be
affected. This is more perverse than g(ui,ui)! Moreover, we cannot be sure that both arguments of g will always

144
www.EBooksWorld.ir

Conclusion

refer to the same object! In the future, it may be that the interface objects are separated for some reason. The fact
that all interfaces are combined into a single object is information that g does not need to know. Thus, I prefer the
polyadic form for such functions.

Grouping Clients. Clients can often be grouped together by the service methods they call. Such group-
ings allow segregated interfaces to be created for each group instead of each client. This greatly reduces the num-
ber of interfaces that the service has to implement, and it also prevents the service from depending on each client
type.

Sometimes, the methods invoked by different groups of clients will overlap. If the overlap is small, then the
interfaces for the groups should remain separate. The common functions should be declared in all the overlapping
interfaces. The server class will inherit the common functions from each of those interfaces, but it will implement
them only once.

Changing Interfaces. When object-oriented applications are maintained, the interfaces to existing
classes and components often change. There are times when these changes have a huge impact and force the
recompilation and redeployment of a very large part of the system. This impact can be mitigated by adding new
interfaces to existing objects, rather than changing the existing interface. Clients of the old interface that wish to
access methods of the new interface can query the object for that interface, as shown in Listing 12-10.

Listing 12-10
void Client(Service* s)
{
 if (NewService* ns = dynamic_cast<NewService*>(s))
 {
 // use the new service interface
 }
}

As with all principles, care must be taken not to overdo it. The spectre of a class with hundreds of different
interfaces, some segregated by client and others segregated by version, would be frightening indeed.

Conclusion
Fat classes cause bizarre and harmful couplings between their clients. When one client forces a change on the fat
class, all the other clients are affected. Thus, clients should only have to depend on methods that they actually call.
This can be achieved by breaking the interface of the fat class into many client-specific interfaces. Each client-spe-
cific interface declares only those functions that its particular client, or client group, invoke. The fat class can then
inherit all the client-specific interfaces and implement them. This breaks the dependence of the clients on methods
that they don’t invoke, and it allows the clients to be independent of each other.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.

145
www.EBooksWorld.ir

146
www.EBooksWorld.ir

SECTION 3

The Payroll Case Study

The time has come for our first major case study. We have studied practices and principles. We have discussed the
essence of design. We have talked about testing and planning. Now we need to do some real work.

In the next several chapters, we are going to explore the design and implementation of a batch payroll sys-
tem. A rudimentary specification of that system is included later. As part of that design and implementation, we
will find ourselves making use of several different design patterns. Among those patterns are COMMAND, TEM-

PLATE METHOD, STRATEGY, SINGLETON, NULL OBJECT, FACTORY, and FACADE. These patterns are the topic of
the next several chapters. Then, in Chapter 18, we work through the design and implementation of the Payroll
problem.

There are several ways to read through this case study:

• Read straight through, first learning the design patterns and then seeing how they are applied to the payroll
problem.

• If you know the patterns and are not interested in a review, then go right to Chapter 18.
• Read Chapter 18 first, and then go back and read through the chapters that describe the patterns that were

used.
• Read Chapter 18 in bits. When it talks about a pattern with which you are unfamiliar, read through the chap-

ter that describes that pattern, and then return to Chapter 18.
• Indeed, there are no rules. Pick, or invent, the strategy that works best for you.

From Section 3 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

147
www.EBooksWorld.ir

Rudimentary Specification of the Payroll System
The following are some of the notes we took while conversing with our customer.

This system consists of a database of the employees in the company and their associated data, such as time
cards. The system must pay each employee. Employees must be paid the correct amount, on time, by the method
that they specify. Also, various deductions must be taken from their pay.

• Some employees work by the hour. They are paid an hourly rate that is one of the fields in their employee
record. They submit daily time cards that record the date and the number of hours worked. If they work more
than 8 hours per day, they are paid 1.5 times their normal rate for those extra hours. They are paid every
Friday.

• Some employees are paid a flat salary. They are paid on the last working day of the month. Their monthly
salary is one of the fields in their employee record.

• Some of the salaried employees are also paid a commission based on their sales. They submit sales receipts
that record the date and the amount of the sale. Their commission rate is a field in their employee record.
They are paid every other Friday.

• Employees can select their method of payment. They may have their paychecks mailed to the postal address
of their choice; they may have their paychecks held for pickup by the Paymaster; or they can request that
their paychecks be directly deposited into the bank account of their choice.

• Some employees belong to the union. Their employee record has a field for the weekly dues rate. Their dues
must be deducted from their pay. Also, the union may assess service charges against individual union mem-
bers from time to time. These service charges are submitted by the union on a weekly basis and must be
deducted from the appropriate employee’s next pay amount.

• The payroll application will run once each working day and pay the appropriate employees on that day. The
system will be told to what date the employees are to be paid, so it will calculate payments from the last time
the employee was paid up to the specified date.

Exercise

Before you continue, you might find it instructive to design the payroll system on your own, now. You might want
to sketch some initial UML diagrams. Better yet, you might want to implement the first few use cases test-first.
Apply the principles and practices we’ve learned so far, and try to create a balanced and healthy design.

If you are going to do this, then take a look at the use cases that follow. Otherwise skip them, they’ll be pre-
sented again in the Payroll chapter.

Use Case 1: Add New Employee

A new employee is added by the receipt of an AddEmp transaction. This transaction contains the employee’s
name, address, and assigned employee number. The transaction has the following three forms:

AddEmp <EmpID> “<name>” “<address>” H <hourly-rate>
AddEmp <EmpID> “<name>” “<address>” S <monthly-salary>
AddEmp <EmpID> “<name>” “<address>” C <monthly-salary> <commission-rate>

The employee record is created with its fields assigned appropriately.

Alternative:
An error in the transaction structure

If the transaction structure is inappropriate, it is printed out in an error message, and no action is taken.

148
www.EBooksWorld.ir

Use Case 2: Deleting an Employee

Use Case 3: Post a Time Card

Use Case 4: Posting a Sales Receipt

Employees are deleted when a DelEmp transaction is received. The form of this transaction is as follows:

DelEmp <EmpID>

When this transaction is received, the appropriate employee record is deleted.

Alternative:
Invalid or unknown EmpID

If the <EmpID> field is not structured correctly, or if it does not refer to a valid employee record, then the
transaction is printed with an error message, and no other action is taken.

Upon receipt of a TimeCard transaction, the system will create a time-card record and associate it with the
appropriate employee record.

TimeCard <Empld> <date> <hours>

Alternative 1:
The selected employee is not hourly

The system will print an appropriate error message and take no further action.

Alternative 2:
An error in the transaction structure

The system will print an appropriate error message and take no further action.

Upon receipt of the SalesReceipt transaction, the system will create a new sales-receipt record and asso-
ciate it with the appropriate commissioned employee.

SalesReceipt <EmpID> <date> <amount>

Alternative 1:
The selected employee is not commissioned

The system will print an appropriate error message and take no further action.

Alternative 2:
An error in the transaction structure

The system will print an appropriate error message and take no further action.

149
www.EBooksWorld.ir

Use Case 5: Posting a Union Service Charge

Use Case 6: Changing Employee Details

Use Case 7: Run the Payroll for Today

Upon receipt of this transaction, the system will create a service-charge record and associate it with the
appropriate union member.

ServiceCharge <memberID> <amount>

Alternative:
Poorly formed transaction

If the transaction is not well formed or if the <memberID> does not refer to an existing union member, then
the transaction is printed with an appropriate error message.

Upon receipt of this transaction, the system will alter one of the details of the appropriate employee record.
There are several possible variations to this transaction.

ChgEmp <EmpID> Name <name> Change Employee Name
ChgEmp <EmpID> Address <address> Change Employee Address
ChgEmp <EmpID> Hourly <hourlyRate> Change to Hourly
ChgEmp <EmpID> Salaried <salary> Change to Salaried
ChgEmp <EmpID> Commissioned <salary> <rate> Change to Commissioned
ChgEmp <EmpID> Hold Hold Paycheck
ChgEmp <EmpID> Direct <bank> <account> Direct Deposit
ChgEmp <EmpID> Mail <address> Mail Paycheck
ChgEmp <EmpID> Member <memberID> Dues <rate> Put Employee in Union
ChgEmp <EmpID> NoMember Remove Employee from Union

Alternative:
Transaction Errors

If the structure of the transaction is improper or <EmpID> does not refer to a real employee or <memberID>
already refers to a member, then print a suitable error and take no further action.

Upon receipt of the Payday transaction, the system finds all those employees that should be paid upon the
specified date. The system then determines how much they are owed and pays them according to their
selected payment method.

Payday <date>

150
www.EBooksWorld.ir

13

COMMAND and ACTIVE OBJECT

No man has received from nature the right to command his fellow human beings.

—Denis Diderot (1713–1784)

Of all the design patterns that have been described over the years, COMMAND impresses me as one of the simplest
and most elegant. As we shall see, the simplicity is deceptive. The range of uses that COMMAND may be put to is
probably without bound.

The simplicity of COMMAND, as shown in Figure 13-1, is almost laughable. Listing 13-1 doesn’t do much to
dampen the levity. It seems absurd that we can have a pattern that consists of nothing more than an interface with
one method.

Listing 13-1

Command.java

public interface Command
{
 public void do();
}

Figure 13-1 COMMAND Pattern

+ do()

«interface»
Command

From Chapter 13 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

151
www.EBooksWorld.ir

Chapter 13 • Command and Active Object

But, in fact, a very interesting line has been crossed by this pattern. And it is in the crossing of this line that
all the interesting complexity lies. Most classes associate a suite of methods with a corresponding set of variables.
The COMMAND pattern does not do this. Rather, it encapsulates a function free of any variables.

In strict object-oriented terms, this is anathema—it smacks of functional decomposition. It elevates the role
of a function to the level of a class. Blasphemy! Yet, at this boundary where two paradigms clash, interesting
things start to occur.

Simple Commands
Several years ago, I consulted for a large firm that made photocopiers. I was helping one of their development
teams with the design and implementation of the embedded real-time software that drove the inner workings of a
new copier. We stumbled on the idea of using the COMMAND pattern to control the hardware devices. We created a
hierarchy that looked something like Figure 13-2.

The role of these classes should be obvious. When you call do() on a RelayOnCommand, it turns some relay
on. When you call do() on a MotorOffCommand, it turns some motor off. The address of the motor or relay is
passed into the object as an argument to its constructor.

With this structure in place, we could now pass Command objects around the system and do() them without
knowing precisely what kind of Command they represented. This led to some interesting simplifications.

The system was event driven. Relays opened or closed, motors started or stopped, and clutches engaged or
disengaged based on certain events that took place in the system. Many of those events were detected by sensors.
For example, when an optical sensor determined that a sheet of paper had reached a certain point in the paper path,
we’d need to engage a certain clutch. We were able to implement this by simply binding the appropriate
ClutchOnCommand to the object that controlled that particular optical sensor. (See Figure 13-3.)

This simple structure has an enormous advantage. The Sensor has no idea what it is doing. Whenever it
detects an event, it simply calls do() on the Command that it is bound to. This means that the Sensors don’t have
to know about individual clutches or relays. They don’t have to know the mechanical structure of the paper path.
Their function becomes remarkably simple.

The complexity of determining which relays to close when certain sensors declare events has moved to an
initialization function. At some point during the initialization of the system, each Sensor is bound to an appropri-

Figure 13-2 Some Simple Commands for the Copier software

Figure 13-3 A Command driven by a Sensor

+ do()

«interface»
Command

RelayOff
Command

MotorOff
Command

ClutchOff
Command

RelayOn
Command

MotorOn
Command

ClutchOn
Command

Sensor Command

152
www.EBooksWorld.ir

Transactions

ate Command. This puts all the wiring1 in one place and gets it out of the main body of the system. Indeed, it would
be possible to create a simple text file that described which Sensors were bound to which Commands. The initial-
ization program could read this file and build the system appropriately. Thus, the wiring of the system could be
determined completely outside the program, and it could be adjusted without recompilation.

By encapsulating the notion of a command, this pattern allowed us to decouple the logical interconnections
of the system from the devices that were being connected. This was a huge benefit.

Transactions
Another common use of the COMMAND pattern, and one that we will find useful in the Payroll problem, is in the
creation and execution of transactions. Imagine, for example, that we are writing the software that maintains a
database of employees. (See Figure 13-4.) There are a number of operations that users can apply to that database.
They can add new employees, delete old employees, or change the attributes of existing employees.

When a user decides to add a new employee, that user must specify all the information needed to success-
fully create the employee record. Before acting on that information, the system needs to verify that the information
is syntactically and semantically correct. The COMMAND pattern can help with this job. The command object acts
as a repository for the unvalidated data, implements the validation methods, and implements the methods that
finally execute the transaction.

For example, consider Figure 13-5. The AddEmployeeTransaction contains the same data fields that
Employee contains. It also holds a pointer to a PayClassification object. These fields and object are created
from the data that the user specifies when directing the system to add a new employee.

The validate method looks over all the data and makes sure it makes sense. It checks it for syntactic and
semantic correctness. It may even check to ensure that the data in the transaction are consistent with the existing
state of the database. For example, it might ensure that no such employee already exists.

1. The logical interconnections between the Sensors and Commands.

Figure 13-4 Employee Database

Employee

- name
- address

+ CalculatePay()

«interface»

Salaried
Classification

- monthlyPay

Commissioned
Classification

- basePay
- commissionRate

TimeCard

- date
- hours

Hourly
Classification

- hourlyRate

Pay
Classification

0..*

Sales
Receipt

- date
- amount

0..*

153
www.EBooksWorld.ir

Chapter 13 • Command and Active Object

The execute method uses the validated data to update the database. In our simple example, a new
Employee object would be created and loaded with the fields from the AddEmployeeTransaction object. The
PayClassification object would be moved or copied into the Employee.

Physical and Temporal Decoupling

The benefit this gives us is in the dramatic decoupling between the code that procures the data from the user, the
code that validates and operates on that data, and the business objects themselves. For example, one might expect
the data for adding a new employee to be procured from a dialog box in some GUI. It would be a shame if the GUI
code contained the validation and execution algorithms for the transaction. Such a coupling would prevent that val-
idation and execution code from being used with other interfaces. By separating the validation and execution code
into the AddEmployeeTransaction class, we have physically decoupled that code from the procurement inter-
face. What’s more, we’ve separated the code that knows how to manipulate the logistics of the database from the
business entities themselves.

Temporal Decoupling

We have also decoupled the validation and execution code in a different way. Once the data have been procured,
there is no reason why the validation and execution methods must be called immediately. The transaction objects
can be held in a list and validated and executed much later.

Suppose we have a database that must remain unchanged during the day. Changes may only be applied dur-
ing the hours between midnight and 1 A.M. It would be a shame to have to wait until midnight and then have to
rush to type in all the commands before 1 A.M. It would be much more convenient to type in all the commands,
have them validated on the spot, and then executed later at midnight. The COMMAND pattern gives us this ability.

UNDO
Figure 13-6 adds the undo() method to the COMMAND pattern. It stands to reason
that if the do() method of a Command derivative can be implemented to remember
the details of the operation it performs, then the undo() method can be imple-
mented to undo that operation and return the system to its original state.

Figure 13-5 AddEmployee Transaction

Figure 13-6 Undo variation of the COMMAND Pattern.

Transaction
«interface»

+ validate()
+ execute()

- name
- address
+ validate()
+ execute()

AddEmployee
Transaction Pay

Classification

«interface»

+ CalculatePay()

Command
«interface»

+ do()
+ undo()

154
www.EBooksWorld.ir

Active Object

Imagine, for example, an application that allows the user to draw geometric shapes on the screen. A toolbar
has buttons that allow the user to draw circles, squares, rectangles, etc. Let’s say that the user clicks on the
draw circle button. The system creates a DrawCircleCommand and then calls do() on that command. The
DrawCircleCommand object tracks the user’s mouse waiting for a click in the drawing window. On receiving that
click, it sets the click point as the center of the circle and proceeds to draw an animated circle at that center with a
radius that tracks the current mouse position. When the user clicks again, the DrawCircleCommand stops animat-
ing the circle and adds the appropriate circle object to the list of shapes currently displayed on the canvas. It also
stores the ID of the new circle in some private variable of its own. Then it returns from the do() method. The sys-
tem then pushes the expended DrawCirlceCommand on the stack of completed commands.

Later, the user clicks the undo button on the toolbar. The system pops the completed commands stack and calls
undo() on the resulting Command object. on receiving the undo() message, the DrawCircleCommand object deletes
the circle matching the saved ID from the list of objects currently displayed on the canvas.

With this technique, you can easily implement the undo command in nearly any application. The code that
knows how to undo a command is always right next to the code that knows how to perform the command.

ACTIVE OBJECT

One of my favorite uses of the COMMAND pattern is the ACTIVE OBJECT pattern.2 This is a very old technique for
implementing multiple threads of control. It has been used, in one form or another, to provide a simple multitask-
ing nucleus for thousands of industrial systems.

The idea is very simple. Consider Listings 13-2 and 13-3. An ActiveObjectEngine object maintains a
linked list of Command objects. Users can add new commands to the engine, or they can call run(). The run()
function simply walks through the linked list executing and removing each command.

Listing 13-2

ActiveObjectEngine.java

import java.util.LinkedList;
import java.util.Iterator;

public class ActiveObjectEngine
{
 LinkedList itsCommands = new LinkedList();

 public void addCommand(Command c)
 {
 itsCommands.add(c);
 }

 public void run()
 {
 while (!itsCommands.isEmpty())
 {
 Command c = (Command) itsCommands.getFirst();
 itsCommands.removeFirst();
 c.execute();
 }
 }
}

2. [Lavender96].

155
www.EBooksWorld.ir

Chapter 13 • Command and Active Object

Listing 13-3

Command.java

public interface Command
{
 public void execute() throws Exception;
}

This may not seem very impressive. But imagine what would happen if one of the Command objects in the
linked list cloned itself and then put the clone back on the list. The list would never go empty, and the run() func-
tion would never return.

Consider the test case in Listing 13-4. It creates something called a SleepCommand. Among other things, it
passes a delay of 1000 ms to the constructor of the SleepCommand. It then puts the SleepCommand into the
ActiveObjectEngine. After calling run(), it expects that a certain number of milliseconds has elapsed.

Listing 13-4

TestSleepCommand.java

import junit.framework.*;
import junit.swingui.TestRunner;

public class TestSleepCommand extends TestCase
{
 public static void main(String[] args)
 {
 TestRunner.main(new String[]{"TestSleepCommand"});
 }

 public TestSleepCommand(String name)
 {
 super(name);
 }

 private boolean commandExecuted = false;

 public void testSleep() throws Exception
 {
 Command wakeup = new Command()
 {
 public void execute() {commandExecuted = true;}
 };
 ActiveObjectEngine e = new ActiveObjectEngine();
 SleepCommand c = new SleepCommand(1000,e,wakeup);
 e.addCommand(c);
 long start = System.currentTimeMillis();
 e.run();
 long stop = System.currentTimeMillis();
 long sleepTime = (stop-start);
 assert("SleepTime " + sleepTime + " expected > 1000",
 sleepTime > 1000);
 assert("SleepTime " + sleepTime + " expected < 1100",
 sleepTime < 1100);
 assert("Command Executed", commandExecuted);
 }
}

156
www.EBooksWorld.ir

Active Object

Let’s look at this test case more closely. The constructor of the SleepCommand contains three arguments.
The first is the delay time in milliseconds. The second is the ActiveObjectEngine that the command will be
running in. Finally, there is another command object called wakeup. The intent is that the SleepCommand will
wait for the specified number of milliseconds and will then execute the wakeup command.

Listing 13-5 shows the implementation of SleepCommand. On execution, SleepCommand checks to see if it
has been executed previously. If not, then it records the start time. If the delay time has not passed, it puts itself
back in the ActiveObjectEngine. If the delay time has passed, it puts the wakeup command into the
ActiveObjectEngine.

Listing 13-5

SleepCommand.java

public class SleepCommand implements Command
{
 private Command wakeupCommand = null;
 private ActiveObjectEngine engine = null;
 private long sleepTime = 0;
 private long startTime = 0;
 private boolean started = false;

 public SleepCommand(long milliseconds, ActiveObjectEngine e,
 Command wakeupCommand)
 {
 sleepTime = milliseconds;
 engine = e;
 this.wakeupCommand = wakeupCommand;
 }

 public void execute() throws Exception
 {
 long currentTime = System.currentTimeMillis();
 if (!started)
 {
 started = true;
 startTime = currentTime;
 engine.addCommand(this);
 }
 else if ((currentTime - startTime) < sleepTime)
 {
 engine.addCommand(this);
 }
 else
 {
 engine.addCommand(wakeupCommand);
 }
 }
}

We can draw an analogy between this program and a multithreaded program that is waiting for an event.
When a thread in a multithreaded program waits for an event, it usually invokes some operating system call that
blocks the thread until the event has occurred. The program in Listing 13-5 does not block. Instead, if the event it
is waiting for ((currentTime - startTime) < sleepTime) has not occurred, it simply puts itself back into the
ActiveObjectEngine.

157
www.EBooksWorld.ir

Chapter 13 • Command and Active Object

Building multithreaded systems using variations of this technique has been, and will continue to be, a very
common practice. Threads of this kind have been known as run-to-completion tasks (RTC), because each
Command instance runs to completion before the next Command instance can run. The name RTC implies that the
Command instances do not block.

The fact that the Command instances all run to completion gives RTC threads the interesting advantage that
they all share the same run-time stack. Unlike the threads in a traditional multithreaded system, it is not necessary
to define or allocate a separate run-time stack for each RTC thread. This can be a powerful advantage in memory-
constrained systems with many threads.

Continuing our example, Listing 13-6 shows a simple program that makes use of SleepCommand and exhib-
its multithreaded behavior. This program is called DelayedTyper.

Listing 13-6

DelayedTyper.java

public class DelayedTyper implements Command
{
 private long itsDelay;
 private char itsChar;
 private static ActiveObjectEngine engine =
 new ActiveObjectEngine();
 private static boolean stop = false;

 public static void main(String args[])
 {
 engine.addCommand(new DelayedTyper(100,'1'));
 engine.addCommand(new DelayedTyper(300,'3'));
 engine.addCommand(new DelayedTyper(500,'5'));
 engine.addCommand(new DelayedTyper(700,'7'));

 Command stopCommand = new Command()
 {
 public void execute() {stop=true;}
 };

 engine.addCommand(
 new SleepCommand(20000,engine,stopCommand));
 engine.run();
 }

 public DelayedTyper(long delay, char c)
 {
 itsDelay = delay;
 itsChar = c;
 }

 public void execute() throws Exception
 {
 System.out.print(itsChar);
 if (!stop)
 delayAndRepeat();
 }

158
www.EBooksWorld.ir

Conclusion

 private void delayAndRepeat() throws Exception
 {
 engine.addCommand(new SleepCommand(itsDelay,engine,this);
 }
}

Notice that DelayedTyper implements Command. The execute method simply prints a character that was
passed at construction, checks the stop flag, and, if not set, invokes delayAndRepeat. The delayAndRepeat
method constructs a SleepCommand, using the delay that was passed in at construction. It then inserts the
SleepCommand into the ActiveObjectEngine.

The behavior of this Command is easy to predict. In effect, it hangs in a loop repeatedly typing a specified
character and waiting for a specified delay. It exits the loop when the stop flag is set.

The main program of DelayedTyper starts several DelayedTyper instances going in the
ActiveObjectEngine, each with its own character and delay. It then invokes a SleepCommand that will set the
stop flag after a while. Running this program produces a simple string of 1’s, 3’s, 5’s and 7’s. Running it again
produces a similar, but different string. Here are two typical runs:

135711311511371113151131715131113151731111351113711531111357...
135711131513171131511311713511131151731113151131711351113117...

These strings are different because the CPU clock and the real-time clock aren’t in perfect sync. This kind of
nondeterministic behavior is the hallmark of multithreaded systems.

Nondeterministic behavior is also the source of much woe, anguish, and pain. As anyone who has worked on
embedded real-time systems knows, it’s tough to debug nondeterministic behavior.

Conclusion
The simplicity of the COMMAND pattern belies its versatility. COMMAND can be used for a wonderful variety of
purposes ranging from database transactions, to device control, to multithreaded nuclei, to GUI do/undo
administration.

It has been suggested that the COMMAND pattern breaks the OO paradigm because it emphasizes functions
over classes. That may be true, but in the real world of the software developer, the COMMAND pattern can be very
useful.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.
2. Lavender, R. G., and D. C. Schmidt. Active Object: An Object Behavioral Pattern for Concurrent Programming, in “Pattern Languages

of Program Design” (J. O. Coplien, J. Vlissides, and N. Kerth, eds.). Reading, MA: Addison–Wesley, 1996.

159
www.EBooksWorld.ir

160
www.EBooksWorld.ir

14

TEMPLATE METHOD & STRATEGY:
Inheritance vs. Delegation

“The best strategy in life is diligence.”

—Chinese Proverb

Way, way back in the early 90s—back in the early days of OO—we were all quite taken with the notion of
inheritance. The implications of the relationship were profound. With inheritance we could program by difference!
That is, given some class that did something almost useful to us, we could create a subclass and change only the
bits we didn’t like. We could reuse code simply by inheriting it! We could establish whole taxonomies of software
structures, each level of which reused code from the levels above. It was a brave new world.

Like most brave new worlds, this one turned out to be a bit too starry eyed. By 1995, it was clear that inher-
itance was very easy to overuse and that overuse of inheritance was very costly. Gamma, Helm, Johnson, and
Vlissides went so far as to stress, “Favor object composition over class inheritance.”1 So we cut back on our use of
inheritance, often replacing it with composition or delegation.

This chapter is the story of two patterns that epitomize the difference between inheritance and delegation.
TEMPLATE METHOD and STRATEGY solve similar problems and can often be used interchangeably. However, TEM-

PLATE METHOD uses inheritance to solve the problem, whereas STRATEGY uses delegation.
TEMPLATE METHOD and STRATEGY both solve the problem of separating a generic algorithm from a

detailed context. We see the need for this very frequently in software design. We have an algorithm that is generi-
cally applicable. In order to conform to the Dependency-Inversion Principle (DIP), we want to make sure that the

1. [GOF95], p. 20.

From Chapter 14 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

161
www.EBooksWorld.ir

Chapter 14 • Template Method & Strategy: Inheritance vs. Delegation

generic algorithm does not depend on the detailed implementation. Rather, we want the generic algorithm and the
detailed implementation to depend on abstractions.

TEMPLATE METHOD

Consider all the programs you have written. Many probably have this fundamental main-loop structure.

Initialize();
while (!done()) // main loop
{
 Idle(); // do something useful.
}
Cleanup();

First we initialize the application. Then we enter the main loop. In the main loop we do whatever the pro-
gram needs us to do. We might process GUI events or perhaps process database records. Finally, once we are done,
we exit the main loop and clean up before we exit.

This structure is so common that we can capture it in a class named Application. Then we can reuse that
class for every new program we want to write. Think of it! We never have to write that loop again!2

For example, consider Listing 14-1. Here we see all the elements of the standard program. The
InputStreamReader and BufferedReader are initialized. There is a main loop that reads Fahrenheit readings
from the BufferedReader and prints out Celsius conversions. At the end, an exit message is printed.

Listing 14-1

ftoc raw

import java.io.*;
public class ftocraw
{
 public static void main(String[] args) throws Exception
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 boolean done = false;
 while (!done)
 {
 String fahrString = br.readLine();
 if (fahrString == null || fahrString.length() == 0)
 done = true;
 else
 {
 double fahr = Double.parseDouble(fahrString);
 double celcius = 5.0/9.0*(fahr-32);
 System.out.println("F=" + fahr + ", C=" + celcius);
 }
 }
 System.out.println("ftoc exit");
 }
}

This program has all the elements of the main-loop structure. It does a little initialization, does its work in a
main loop, and then cleans up and exits.

2. I’ve also got this bridge I’d like to sell you.

162
www.EBooksWorld.ir

Template Method

We can separate this fundamental structure from the ftoc program by employing the TEMPLATE METHOD

pattern. This pattern places all the generic code into an implemented method of an abstract base class. The imple-
mented method captures the generic algorithm, but defers all details to abstract methods of the base class.

So, for example, we can capture the main-loop structure in an abstract base class called Application. (See
Listing 14-2.)

Listing 14-2

Application.java

public abstract class Application
{
 private boolean isDone = false;

 protected abstract void init();
 protected abstract void idle();
 protected abstract void cleanup();

 protected void setDone()
 {isDone = true;}

 protected boolean done()
 {return isDone;}

 public void run()
 {
 init();
 while (!done())
 idle();
 cleanup();
 }
}

This class describes a generic main-loop application. We can see the main loop in the implemented run
function. We can also see that all the work is being deferred to the abstract methods init, idle, and cleanup.
The init method takes care of any initialization we need done. The idle method does the main work of the pro-
gram and will be called repeatedly until setDone is called. The cleanup method does whatever needs to be done
before we exit.

We can rewrite the ftoc class by inheriting from Application and just filling in the abstract methods.
Listing 14-3 show what this looks like.

Listing 14-3

ftocTemplateMethod.java

import java.io.*;
public class ftocTemplateMethod extends Application
{
 private InputStreamReader isr;
 private BufferedReader br;

 public static void main(String[] args) throws Exception
 {
 (new ftocTemplateMethod()).run();
 }

163
www.EBooksWorld.ir

Chapter 14 • Template Method & Strategy: Inheritance vs. Delegation

 protected void init()
 {
 isr = new InputStreamReader(System.in);
 br = new BufferedReader(isr);
 }

 protected void idle()
 {
 String fahrString = readLineAndReturnNullIfError();
 if (fahrString == null || fahrString.length() == 0)
 setDone();
 else
 {
 double fahr = Double.parseDouble(fahrString);
 double celcius = 5.0/9.0*(fahr-32);
 System.out.println("F=" + fahr + ", C=" + celcius);
 }
 }

 protected void cleanup()
 {
 System.out.println("ftoc exit");
 }

 private String readLineAndReturnNullIfError()
 {
 String s;
 try
 {
 s = br.readLine();
 }
 catch(IOException e)
 {
 s = null;
 }
 return s;
 }
}

Dealing with the exception made the code get a little longer, but it’s easy to see how the old ftoc application
has been fit into the TEMPLATE METHOD pattern.

Pattern Abuse

By this time you should be thinking, “Is he serious? Does he really expect me to use this Application class for
all new apps? It hasn’t bought me anything, and it’s overcomplicated the problem.”

I chose the example because it was simple and provided a good platform for showing the mechanics of TEM-

PLATE METHOD. On the other hand, I don’t really recommend building ftoc like this.
This is a good example of pattern abuse. Using TEMPLATE METHOD for this particular application is ridicu-

lous. It complicates the program and makes its bigger. Encapsulating the main loop of every application in the uni-
verse sounded wonderful when we started, but the practical application is fruitless in this case.

Design patterns are wonderful things. They can help you with many design problems. But the fact that they
exist does not mean that they should always be used. In this case, while TEMPLATE METHOD was applicable to the
problem, its use was not advisable. The cost of the pattern was higher than the benefit it yielded.

So let’s look at a slightly more useful example. (See Listing 14-4.)

164
www.EBooksWorld.ir

Template Method

Bubble Sort3

Listing 14-4

BubbleSorter.java

public class BubbleSorter
{
 static int operations = 0;
 public static int sort(int [] array)
 {
 operations = 0;
 if (array.length <= 1)
 return operations;

 for (int nextToLast = array.length-2;
 nextToLast >= 0; nextToLast--)
 for (int index = 0; index <= nextToLast; index++)
 compareAndSwap(array, index);

 return operations;
 }

 private static void swap(int[] array, int index)
 {
 int temp = array[index];
 array[index] = array[index+1];
 array[index+1] = temp;
 }

 private static void compareAndSwap(int[] array, int index)
 {
 if (array[index] > array[index+1])
 swap(array, index);
 operations++;
 }
}

The BubbleSorter class knows how to sort an array of integers using the bubble-sort algorithm. The sort
method of BubbleSorter contains the algorithm that knows how to do a bubble sort. The two ancillary methods,
swap and compareAndSwap, deal with the details of integers and arrays and handle the mechanics that the sort
algorithm requires.

3. Like Application, Bubble Sort is easy to understand and so makes a useful teaching tool. However, no one in their right mind
would ever actually use a Bubble Sort if they had any significant amount of sorting to do. There are much better algorithms.

165
www.EBooksWorld.ir

Chapter 14 • Template Method & Strategy: Inheritance vs. Delegation

Using the TEMPLATE METHOD pattern, we can separate the bubble-sort algorithm out into an abstract base
class named BubbleSorter. BubbleSorter contains an implementation of the sort function that calls an
abstract method named outOfOrder and another called swap. The outOfOrder method compares two adjacent
elements in the array and returns true if the elements are out of order. The swap method swaps two adjacent cells
in the array.

The sort method does not know about the array, nor does it care what kind of objects are stored in the array.
It just calls outOfOrder for various indices into the array and determines whether those indices should be
swapped or not. (See Listing 14-5.)

Listing 14-5

BubbleSorter.java

public abstract class BubbleSorter
{
 private int operations = 0;
 protected int length = 0;

 protected int doSort()
 {
 operations = 0;
 if (length <= 1)
 return operations;

 for (int nextToLast = length-2;
 nextToLast >= 0; nextToLast--)
 for (int index = 0; index <= nextToLast; index++)
 {
 if (outOfOrder(index))
 swap(index);
 operations++;
 }

 return operations;
 }

 protected abstract void swap(int index);
 protected abstract boolean outOfOrder(int index);
}

Given BubbleSorter we can now create simple derivatives that can sort any different kind of object. For
example, we could create IntBubbleSorter, which sorts arrays of integers, and DoubleBubbleSorter, which
sorts arrays of doubles. (See Figure 14-1, Listing 14-6, and Listing 14-7.)

Figure 14-1 Bubble-Sorter Structure

IntBubble
Sorter

BubbleSorter

DoubleBubble
Sorter

outOfOrder
swap

{abstract}

166
www.EBooksWorld.ir

Template Method

Listing 14-6

IntBubbleSorter.java

public class IntBubbleSorter extends BubbleSorter
{
 private int[] array = null;
 public int sort(int [] theArray)
 {
 array = theArray;
 length = array.length;
 return doSort();
 }

 protected void swap(int index)
 {
 int temp = array[index];
 array[index] = array[index+1];
 array[index+1] = temp;
 }

 protected boolean outOfOrder(int index)
 {
 return (array[index] > array[index+1]);
 }
}

Listing 14-7

DoubleBubbleSorter.java

public class DoubleBubbleSorter extends BubbleSorter
{
 private double[] array = null;
 public int sort(double [] theArray)
 {
 array = theArray;
 length = array.length;
 return doSort();
 }

 protected void swap(int index)
 {
 double temp = array[index];
 array[index] = array[index+1];
 array[index+1] = temp;
 }

 protected boolean outOfOrder(int index)
 {
 return (array[index] > array[index+1]);
 }
}

The TEMPLATE METHOD pattern shows one of the classic forms of reuse in object-oriented programming.
Generic algorithms are placed in the base class and inherited into different detailed contexts. But this technique is not
without its costs. Inheritance is a very strong relationship. Derivatives are inextricably bound to their base classes.

167
www.EBooksWorld.ir

Chapter 14 • Template Method & Strategy: Inheritance vs. Delegation

For example, the outOfOrder and swap functions of IntBubbleSorter are exactly what are needed for
other kinds of sort algorithms. And yet, there is no way to reuse outOfOrder and swap in those other sort algo-
rithms. By inheriting BubbleSorter, we have doomed IntBubbleSorter to be bound forever to BubbleSorter.
The STRATEGY pattern provides another option.

STRATEGY

The STRATEGY pattern solves the problem of inverting the dependencies of the generic algorithm and the detailed
implementation in a very different way. Consider, once again, the pattern-abusing Application problem.

Rather than placing the generic application algorithm into an abstract base class, we place it into a concrete class
named ApplicationRunner. We define the abstract methods that the generic algorithm must call within an interface
named Application. We derive ftocStrategy from this interface and pass it into the ApplicationRunner.
ApplicationRunner then delegates to this interface. (See Figure 14-2, and Listings 14-8 through 14-10.)

Listing 14-8

ApplicationRunner.java

public class ApplicationRunner
{
 private Application itsApplication = null;

 public ApplicationRunner(Application app)
 {
 itsApplication = app;
 }
 public void run()
 {
 itsApplication.init();
 while (!itsApplication.done())
 itsApplication.idle();
 itsApplication.cleanup();
 }
}

Listing 14-9

Application.java

public interface Application
{
 public void init();
 public void idle();

Figure 14-2 Strategy of the Application algorithm

ftocStrategy

Application
«interface»

+ init
+ idle
+ cleanup
+ done : boolean

Application
Runner

+ run

168
www.EBooksWorld.ir

Strategy

 public void cleanup();
 public boolean done();
}

Listing 14-10

ftocStrategy.java

import java.io.*;
public class ftocStrategy implements Application
{
 private InputStreamReader isr;
 private BufferedReader br;
 private boolean isDone = false;

 public static void main(String[] args) throws Exception
 {
 (new ApplicationRunner(new ftocStrategy())).run();
 }

 public void init()
 {
 isr = new InputStreamReader(System.in);
 br = new BufferedReader(isr);
 }

 public void idle()
 {
 String fahrString = readLineAndReturnNullIfError();
 if (fahrString == null || fahrString.length() == 0)
 isDone = true;
 else
 {
 double fahr = Double.parseDouble(fahrString);
 double celcius = 5.0/9.0*(fahr-32);
 System.out.println("F=" + fahr + ", C=" + celcius);
 }
 }

 public void cleanup()
 {
 System.out.println("ftoc exit");
 }

 public boolean done()
 {
 return isDone;
 }

 private String readLineAndReturnNullIfError()
 {
 String s;
 try
 {
 s = br.readLine();
 }
 catch(IOException e)

169
www.EBooksWorld.ir

Chapter 14 • Template Method & Strategy: Inheritance vs. Delegation

 {
 s = null;
 }
 return s;
 }
}

It should be clear that this structure has both benefits and costs over the TEMPLATE METHOD structure.
STRATEGY involves more total classes and more indirection than TEMPLATE METHOD. The delegation pointer
within ApplicationRunner incurs a slightly higher cost in terms of run time and data space than inheritance
would. On the other hand, if we had many different applications to run, we could reuse the ApplicationRunner
instance and pass in many different implementations of Application, thereby reducing the coupling between the
generic algorithm and the details it controls.

None of these costs and benefits are overriding. In most cases, none of them matters in the slightest. In the typ-
ical case, the most worrisome is the extra class needed by the STRATEGY pattern. However, there is more to consider.

Sorting Again

Consider implementating the bubble sort using the STRATEGY pattern. (See Listings 14-11 through 14-13.)

Listing 14-11

BubbleSorter.java

public class BubbleSorter
{
 private int operations = 0;
 private int length = 0;
 private SortHandle itsSortHandle = null;

 public BubbleSorter(SortHandle handle)
 {
 itsSortHandle = handle;
 }

 public int sort(Object array)
 {
 itsSortHandle.setArray(array);
 length = itsSortHandle.length();
 operations = 0;
 if (length <= 1)
 return operations;

 for (int nextToLast = length-2;
 nextToLast >= 0; nextToLast--)
 for (int index = 0; index <= nextToLast; index++)
 {
 if (itsSortHandle.outOfOrder(index))
 itsSortHandle.swap(index);
 operations++;
 }

 return operations;
 }
}

170
www.EBooksWorld.ir

Strategy

Listing 14-12
SortHandle.java

public interface SortHandle
{
 public void swap(int index);
 public boolean outOfOrder(int index);
 public int length();
 public void setArray(Object array);
}

Listing 14-13
IntSortHandle.java

public class IntSortHandle implements SortHandle
{
 private int[] array = null;

 public void swap(int index)
 {
 int temp = array[index];
 array[index] = array[index+1];
 array[index+1] = temp;
 }

 public void setArray(Object array)
 {
 this.array = (int[])array;
 }

 public int length()
 {
 return array.length;
 }

 public boolean outOfOrder(int index)
 {
 return (array[index] > array[index+1]);
 }
}

Notice that the IntSortHandle class knows nothing of the BubbleSorter. It has no dependency whatever
on the bubble-sort implementation. This is not the case with the TEMPLATE METHOD pattern. Look back at Listing
14-6, and you can see that the IntBubbleSorter depended directly on BubbleSorter, the class that contains
the bubble-sort algorithm.

The TEMPLATE METHOD approach partially violates DIP by Implementating the swap and outOfOrder
methods to depend directly on the bubble-sort algorithm. The STRATEGY approach contains no such dependency.
Thus, we can use the IntSortHandle with Sorter implementations other than BubbleSorter.

For example, we can create a variation of the bubble sort that terminates early if a pass through the array
finds it in order. (See Listing 14-14.) QuickBubbleSorter can also use IntSortHandle or any other class
derived from SortHandle.

171
www.EBooksWorld.ir

Chapter 14 • Template Method & Strategy: Inheritance vs. Delegation

Listing 14-14

QuickBubbleSorter.java

public class QuickBubbleSorter
{
 private int operations = 0;
 private int length = 0;
 private SortHandle itsSortHandle = null;

 public QuickBubbleSorter(SortHandle handle)
 {
 itsSortHandle = handle;
 }

 public int sort(Object array)
 {
 itsSortHandle.setArray(array);
 length = itsSortHandle.length();
 operations = 0;
 if (length <= 1)
 return operations;

 boolean thisPassInOrder = false;
 for (int nextToLast = length-2; nextToLast >= 0 && !thisPassInOrder; nextToLast--)
 {
 thisPassInOrder = true; //potenially.
 for (int index = 0; index <= nextToLast; index++)
 {
 if (itsSortHandle.outOfOrder(index))
 {
 itsSortHandle.swap(index);
 thisPassInOrder = false;
 }
 operations++;
 }
 }

 return operations;
 }
}

Thus, the STRATEGY pattern provides one extra benefit over the TEMPLATE METHOD pattern. Whereas the
TEMPLATE METHOD pattern allows a generic algorithm to manipulate many possible detailed implementations, the
STRATEGY pattern by fully conforming to the DIP allows each detailed implementation to be manipulated by many
different generic algorithms.

Conclusion
Both TEMPLATE METHOD and STRATEGY allow you to separate high-level algorithms from low-level details. Both
allow the high-level algorithms to be reused independently of the details. At the cost of a little extra complexity,
memory, and runtime, STRATEGY also allows the details to be reused independently of the high-level algorithm.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.
2. Martin, Robert C., et al. Pattern Languages of Program Design 3. Reading, MA: Addison–Wesley, 1998.

172
www.EBooksWorld.ir

15

FACADE and MEDIATOR

Symbolism erects a facade of respectability to hide the indecency of dreams.

—Mason Cooley

The two patterns discussed in this chapter have a common purpose. Both impose some kind of policy on another
group of objects. FACADE imposes policy from above, and MEDIATOR imposes policy from below. The use of
FACADE is visible and constraining, while the use of MEDIATOR is invisible and enabling.

FACADE

The FACADE pattern is used when you want to provide a simple and specific interface onto a group of objects that
has a complex and general interface. Consider, for example, DB.java in Listing 26-9 on page 333. This class
imposes a very simple interface, specific to ProductData, on the complex and general interfaces of the classes
within the java.sql package. Figure 15-1 shows the structure.

Notice that the DB class protects the Application from needing to know the intimacies of the java.sql
package. It hides all the generality and complexity of java.sql behind a very simple and specific interface.

A FACADE like DB imposes a lot of policy on the usage of the java.sql package. It knows how to initialize
and close the database connection. It knows how to translate the members of ProductData into database fields
and back. It knows how to build the appropriate queries and commands to manipulate the database. And it hides all
that complexity from its users. From the point of view of the Application, java.sql does not exist; it is hidden
behind the FACADE.

From Chapter 15 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

173
www.EBooksWorld.ir

Chapter 15 • Facade and Mediator

The use of the FACADE pattern implies that the developers have adopted the convention that all database
calls must go through DB. If any part of the Application code goes straight to java.sql rather than through the
FACADE, then that convention is violated. As such, the FACADE imposes its polices on the application. By conven-
tion, DB has become the sole broker of the facilities of java.sql.

MEDIATOR

The MEDIATOR pattern also imposes policy. However, whereas Facade imposed its policy in a visible and
constraining way, MEDIATOR imposes its policies in a hidden and unconstrained way. For example, the
QuickEntryMediator class in Listing 15–1 is a class that sits quietly behind the scenes and binds a text-entry
field to a list. When you type in the text-entry field, the first element of the list that matches what you have typed is
highlighted. This lets you type abbreviations and quickly select a list item.

Listing 15-1

QuickEntryMediator.java

package utility;

import javax.swing.*;
import javax.swing.event.*;

/**
QuickEntryMediator. This class takes a JTextField and a JList.
It assumes that the user will type characters into the
JTextField that are prefixes of entries in the JList. It
automatically selects the first item in the JList that matches
the current prefix in the JTextField.

If the JTextField is null, or the prefix does not match any
element in the JList, then the JList selection is cleared.

There are no methods to call for this object. You simply
create it, and forget it. (But don't let it be garbage
collected...)

Figure 15-1 The DB FACADE

Driver
Manager

Prepared
Statement

Connection

ProductData Application

java.sql

ResultSet SQLException

Statement

DB

+ store(ProductData)
+ getProductData(sku)
+ deleteProductData(sku)

174
www.EBooksWorld.ir

Mediator

Example:

JTextField t = new JTextField();
JList l = new JList();

QuickEntryMediator qem = new QuickEntryMediator(t, l);
 // that's all folks.

 @author Robert C. Martin, Robert S. Koss
 @date 30 Jun, 1999 2113 (SLAC)
 */

public class QuickEntryMediator {
 public QuickEntryMediator(JTextField t, JList l) {
 itsTextField = t;
 itsList = l;

 itsTextField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void changedUpdate(DocumentEvent e) {
 textFieldChanged();
 }

 public void insertUpdate(DocumentEvent e) {
 textFieldChanged();
 }

 public void removeUpdate(DocumentEvent e) {
 textFieldChanged();
 }
 } // new DocumentListener
); // addDocumentListener
 } // QuickEntryMediator()

 private void textFieldChanged() {
 String prefix = itsTextField.getText();

 if (prefix.length() == 0) {
 itsList.clearSelection();
 return;
 }

 ListModel m = itsList.getModel();
 boolean found = false;
 for (int i = 0; found == false && i < m.getSize(); i++) {
 Object o = m.getElementAt(i);
 String s = o.toString();
 if (s.startsWith(prefix)) {
 itsList.setSelectedValue(o, true);
 found = true;
 }
 }

 if (!found) {
 itsList.clearSelection();
 }
 } // textFieldChanged

175
www.EBooksWorld.ir

Chapter 15 • Facade and Mediator

 private JTextField itsTextField;
 private JList itsList;
} // class QuickEntryMediator

The structure of the QuickEntryMediator is shown in Figure 15-2. An instance of QuickEntry-
Mediator is constructed with a JList and a JTextField. The QuickEntryMediator registers an anonymous
DocumentListener with the JTextField. This listener invokes the textFieldChanged method whenever
there is a change in the text. This method then finds an element of the JList that is prefixed by the text and
selects it.

The users of the JList and JTextField have no idea that this MEDIATOR exists. It sits there quietly,
imposing its policy on those objects without their permission or knowledge.

Conclusion
Imposing policy can be done from above using FACADE if that policy needs to be big and visible. On the other
hand, if subtlety and discretion are needed, MEDIATOR may be the more appropriate choice. Facades are usually
the focal point of a convention. Everyone agrees to use the facade instead of the objects beneath it. Mediator, on
the other hand, is hidden from the users. Its policy is a fait accompli rather than a matter of convention.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.

Figure 15-2 QuickEntryMediator

QuickEntry
Mediator

JList JTextField

Document
Listener

«anonymous»

176
www.EBooksWorld.ir

16

SINGLETON and MONOSTATE

“Infinite beatitude of existence! It is; and there is none else beside It.”

—The point. Flatland. Edwin A. Abbott

Usually there is a one-to-many relationship between classes and instances. You can create many instances of most
classes. The instances are created when they are needed and disposed of when their usefulness ends. They come
and go in a flow of memory allocations and deallocations.

However, there are some classes that should have only one instance. That instance should appear to have
come into existence when the program started and should be disposed of only when the program ends. Such
objects are sometimes the roots of the application. From the roots you can find your way to many other objects in
the system. Sometimes they are factories, which you can use to create the other objects in the system. Sometimes
these objects are managers, responsible for keeping track of certain other objects and driving them through their
paces.

Whatever these objects are, it is a severe logic failure if more than one of them are created. If more than one
root are created, then access to objects in the application may depend on a chosen root. Programmers, not knowing
that more than one root exist, may find themselves looking at a subset of the application objects without knowing
it. If more than one factory exist, clerical control over the created objects may be compromised. If more than one
manager exist, activities that were intended to be serial may become concurrent.

From Chapter 16 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

177
www.EBooksWorld.ir

Chapter 16 • Singleton and Monostate

It may seem that mechanisms to enforce the singularity of these objects are overkill. After all, when you ini-
tialize the application, you can simply create one of each and be done with it. In fact, this is usually the best course
of action. Mechanism should be avoided when there is no immediate and significant need. However, we also want
our code to communicate our intent. If the mechanism for enforcing singularity is trivial, the benefit of communi-
cation may outweigh the cost of the mechanism.

This chapter is about two patterns that enforce singularity. These patterns have very different cost–benefit
trade-offs. In many contexts, their cost is low enough to more than balance the benefit of their expressiveness.

SINGLETON1

SINGLETON is a very simple pattern. The test case in Listing 16-1 shows how it should work. The first test function
shows that the Singleton instance is accessed through the public static method Instance. It also shows that if
Instance is called multiple times, a reference to the exact same instance is returned each time. The second test
case shows that the Singleton class has no public constructors, so there is no way for anyone to create an
instance without using the Instance method.

Listing 16-1

Singleton Test Case

import junit.framework.*;
import java.lang.reflect.Constructor;

public class TestSimpleSingleton extends TestCase
{
 public TestSimpleSingleton(String name)
 {
 super(name);
 }

 public void testCreateSingleton()
 {
 Singleton s = Singleton.Instance();
 Singleton s2 = Singleton.Instance();
 assertSame(s, s2);
 }

 public void testNoPublicConstructors() throws Exception
 {
 Class singleton = Class.forName("Singleton");
 Constructor[] constructors = singleton.getConstructors();
 assertEquals("public constructors.",
 0, constructors.length);
 }
}

This test case is a specification for the SINGLETON pattern. It leads directly to the code shown in Listing 16-2. It
should be clear, by inspecting this code, that there can never be more than one instance of the Singleton class
within the scope of the static variable Singleton.theInstance.

1. [GOF95], p. 127.

178
www.EBooksWorld.ir

Singleton

Listing 16-2

Singleton Implementation

public class Singleton
{
 private static Singleton theInstance = null;
 private Singleton() {}

 public static Singleton Instance()
 {
 if (theInstance == null)
 theInstance = new Singleton();
 return theInstance;
 }
}

Benefits of the SINGLETON

• Cross platform. Using appropriate middleware (e.g., RMI), SINGLETON can be extended to work across
many JVMs and many computers.

• Applicable to any class. You can change any class into a SINGLETON simply by making its constructors pri-
vate and by adding the appropriate static functions and variable.

• Can be created through derivation. Given a class, you can create a subclass that is a SINGLETON.
• Lazy evaluation. If the SINGLETON is never used, it is never created.

Costs of the SINGLETON

• Destruction is undefined. There is no good way to destroy or decommission a SINGLETON. If you add a
decommission method that nulls out theInstance, other modules in the system may still be holding a
reference to the SINGLETON instance. Subsequent calls to Instance will cause another instance to be cre-
ated, causing two concurrent instances to exist. This problem is particularly acute in C++ where the instance
can be destroyed, leading to possible dereferencing of a destroyed object.

• Not inherited. A class derived from a SINGLETON is not a singleton. If it needs to be a SINGLETON, the static
function and variable need to be added to it.

• Efficiency. Each call to Instance invokes the if statement. For most of those calls, the if statement is
useless.

• Nontransparent. Users of a SINGLETON know that they are using a SINGLETON because they must invoke
the Instance method.

SINGLETON in Action

Assume that we have a Web-based system that allows users to log in to secure areas of a Web server. Such a system
will have a database containing user names, passwords, and other user attributes. Assume further that the database
is accessed through a third-party API. We could access the database directly in every module that needed to read
and write a user. However, this would scatter usage of the third-party API throughout the code, and it would leave
us no place to enforce access or structure conventions.

A better solution is to use the FACADE pattern and create a UserDatabase class that provides methods for
reading and writing User objects. These methods access the third-party API of the database, translating between
User objects and the tables and rows of the database. Within the UserDatabase, we can enforce conventions of
structure and access. For example, we can guarantee that no User record gets written unless it has a nonblank
username. Or we can serialize access to a User record, making sure that two modules cannot simultaneously read
and write it.

179
www.EBooksWorld.ir

Chapter 16 • Singleton and Monostate

The code in Listings 16-3 and 16-4 shows a SINGLETON solution. The SINGLETON class is named
UserDatabaseSource. It implements the UserDatabase interface. Notice that the static instance() method
does not have the traditional if statement to protect against multiple creations. Instead, it takes advantage of the
Java initialization facility.

Listing 16-3

UserDatabase Interface

public interface UserDatabase
{
 User readUser(String userName);
 void writeUser(User user);
}

Listing 16-4

UserDatabaseSource Singleton

public class UserDatabaseSource implements UserDatabase
{
 private static UserDatabase theInstance =
 new UserDatabaseSource();

 public static UserDatabase instance()
 {
 return theInstance;
 }

 private UserDatabaseSource()
 {
 }

 public User readUser(String userName)
 {
 // Some Implementation
 return null; // just to make it compile.
 }

 public void writeUser(User user)
 {
 // Some Implementation
 }
}

This is an extremely common use of the SINGLETON pattern. It assures that all database access will be
through a single instance of UserDatabaseSource. This makes it easy to put checks, counters, and locks in
UserDatabaseSource that enforce the access and structure conventions mentioned earlier.

MONOSTATE2

The MONOSTATE pattern is another way to achieve singularity. It works through a completely different mecha-
nism. We can see how that mechanism works by studying the MONOSTATE test case in Listing 16-5.

The first test function simply describes an object whose x variable can be set and retrieved. But the second
test case shows that two instances of the same class behave as though they were one. If you set the x variable on

2. [BALL2000].

180
www.EBooksWorld.ir

Monostate

one instance to a particular value, you can retrieve that value by getting the x variable of a different instance. It’s as
though the two instances are just different names for the same object.

Listing 16-5

Monostate Test Case

import junit.framework.*;

public class TestMonostate extends TestCase
{
 public TestMonostate(String name)
 {
 super(name);
 }

 public void testInstance()
 {
 Monostate m = new Monostate();
 for (int x = 0; x<10; x++)
 {
 m.setX(x);
 assertEquals(x, m.getX());
 }
 }

 public void testInstancesBehaveAsOne()
 {
 Monostate m1 = new Monostate();
 Monostate m2 = new Monostate();

 for (int x = 0; x<10; x++)
 {
 m1.setX(x);
 assertEquals(x, m2.getX());
 }
 }
}

If we were to plug the Singleton class into this test case and replace all the new Monostate statements
with calls to Singleton.Instance, the test case should still pass. So this test case describes the behavior of
Singleton without imposing the constraint of a single instance!

How can two instances behave as though they were a single object? Quite simply it means that the two
objects must share the same variables. This is easily achieved by making all the variables static. Listing 16-6
shows the implementation of Monostate that passes the above test case. Note that the itsX variable is static.
Note also that none of the methods are static. This is important as we’ll see later.

Listing 16-6

Monostate Implementation

public class Monostate
{
 private static int itsX = 0;
 public Monostate() {}

 public void setX(int x)

181
www.EBooksWorld.ir

Chapter 16 • Singleton and Monostate

 {
 itsX = x;
 }

 public int getX()
 {
 return itsX;
 }
}

I find this to be a delightfully twisted pattern. No matter how many instances of Monostate you create, they
all behave as though they were a single object. You can even destroy or decommission all the current instances
without losing the data.

Note that the difference between the two patterns is one of behavior vs. structure. The SINGLETON pattern
enforces the structure of singularity. It prevents any more than one instance from being created. Whereas
MONOSTATE enforces the behavior of singularity without imposing structural constraints. To underscore this dif-
ference consider that the MONOSTATE test case is valid for the Singleton class, but the SINGLETON test case is
not even close to being valid for the Monostate class.

Benefits of MONOSTATE

• Transparency. Users of a MONOSTATE do not behave differently than users of a regular object. The users do
not need to know that the object is MONOSTATE.

• Derivability. Derivatives of a MONOSTATE are MONOSTATES. Indeed, all the derivatives of a MONOSTATE
are part of the same MONOSTATE. They all share the same static variables.

• Polymorphism. Since the methods of a MONOSTATE are not static, they can be overridden in a derivative.
Thus different derivatives can offer different behavior over the same set of static variables.

• Well-defined creation and destruction. The variables of a MONOSTATE, being static, have well-defined
creation and destruction times.

Costs of MONOSTATE

• No conversion. A normal class cannot be converted into a MONOSTATE class through derivation.
• Efficiency. A MONOSTATE may go through many creations and destructions because it is a real object. These

operations are often costly.
• Presence. The variables of a MONOSTATE take up space, even if the MONOSTATE is never used.
• Platform local. You can’t make a MONOSTATE work across several JVM instances or across several

platforms.

MONOSTATE in Action

Consider implementing the simple finite state machine for a subway turnstile shown in Figure 16-1. The turnstile
begins its life in the Locked state. If a coin is deposited, it transitions to the Unlocked state, unlocks the gate,
resets any alarm state that might be present, and deposits the coin in its collection bin. If a user passes through the
gate at this point, the turnstile transitions back to the Locked state and locks the gate.

There are two abnormal conditions. If the user deposits two or more coins before passing through the gate,
the coins will be refunded and the gate will remain unlocked. If the user passes through without paying, then an
alarm will sound and the gate will remain locked.

The test program that describes this operation is shown in Listing 16-7. Note that the test methods assume
that the Turnstile is a monostate. It expects to be able to send events and gather queries from different instances.
This makes sense if there will never be more than one instance of the Turnstile.

182
www.EBooksWorld.ir

Monostate

Listing 16-7

TestTurnstile

import junit.framework.*;

public class TestTurnstile extends TestCase
{
 public TestTurnstile(String name)
 {
 super(name);
 }

 public void setUp()
 {
 Turnstile t = new Turnstile();
 t.reset();
 }

 public void testInit()
 {
 Turnstile t = new Turnstile();
 assert(t.locked());
 assert(!t.alarm());
 }

 public void testCoin()
 {
 Turnstile t = new Turnstile();
 t.coin();
 Turnstile t1 = new Turnstile();
 assert(!t1.locked());
 assert(!t1.alarm());
 assertEquals(1, t1.coins());
 }

 public void testCoinAndPass()
 {
 Turnstile t = new Turnstile();
 t.coin();
 t.pass();

 Turnstile t1 = new Turnstile();
 assert(t1.locked());
 assert(!t1.alarm());
 assertEquals("coins", 1, t1.coins());
 }

Figure 16-1 Subway Turnstile Finite State Machine

Locked

Unlocked Coin/Refund

Pass/Alarm

Pass/Lock

Coin/Unlock, AlarmOff, Deposit

183
www.EBooksWorld.ir

Chapter 16 • Singleton and Monostate

 public void testTwoCoins()
 {
 Turnstile t = new Turnstile();
 t.coin();
 t.coin();

 Turnstile t1 = new Turnstile();
 assert("unlocked", !t1.locked());
 assertEquals("coins",1, t1.coins());
 assertEquals("refunds", 1, t1.refunds());
 assert(!t1.alarm());
 }

 public void testPass()
 {
 Turnstile t = new Turnstile();
 t.pass();
 Turnstile t1 = new Turnstile();
 assert("alarm", t1.alarm());
 assert("locked", t1.locked());
 }

 public void testCancelAlarm()
 {
 Turnstile t = new Turnstile();
 t.pass();
 t.coin();
 Turnstile t1 = new Turnstile();
 assert("alarm", !t1.alarm());
 assert("locked", !t1.locked());
 assertEquals("coin", 1, t1.coins());
 assertEquals("refund", 0, t1.refunds());
 }

 public void testTwoOperations()
 {
 Turnstile t = new Turnstile();
 t.coin();
 t.pass();
 t.coin();
 assert("unlocked", !t.locked());
 assertEquals("coins", 2, t.coins());
 t.pass();
 assert("locked", t.locked());
 }
}

The implementation of the monostate Turnstile is in Listing 16-8. The base Turnstile class delegates
the two event functions (coin and pass) to two derivatives of Turnstile (Locked and Unlocked) that repre-
sent the states of the finite-state machine.

184
www.EBooksWorld.ir

Monostate

Listing 16-8

Turnstile

public class Turnstile
{
 private static boolean isLocked = true;
 private static boolean isAlarming = false;
 private static int itsCoins = 0;
 private static int itsRefunds = 0;
 protected final static Turnstile LOCKED = new Locked();
 protected final static Turnstile UNLOCKED = new Unlocked();
 protected static Turnstile itsState = LOCKED;

 public void reset()
 {
 lock(true);
 alarm(false);
 itsCoins = 0;
 itsRefunds = 0;
 itsState = LOCKED;
 }

 public boolean locked()
 {
 return isLocked;
 }

 public boolean alarm()
 {
 return isAlarming;
 }

 public void coin()
 {
 itsState.coin();
 }

 public void pass()
 {
 itsState.pass();
 }

 protected void lock(boolean shouldLock)
 {
 isLocked = shouldLock;
 }

 protected void alarm(boolean shouldAlarm)
 {
 isAlarming = shouldAlarm;
 }

 public int coins()
 {
 return itsCoins;
 }

185
www.EBooksWorld.ir

Chapter 16 • Singleton and Monostate

 public int refunds()
 {
 return itsRefunds;
 }

 public void deposit()
 {
 itsCoins++;
 }

 public void refund()
 {
 itsRefunds++;
 }
}

class Locked extends Turnstile
{
 public void coin()
 {
 itsState = UNLOCKED;
 lock(false);
 alarm(false);
 deposit();
 }

 public void pass()
 {
 alarm(true);
 }
}

class Unlocked extends Turnstile
{
 public void coin()
 {
 refund();
 }

 public void pass()
 {
 lock(true);
 itsState = LOCKED;
 }
}

This example shows some of the useful features of the MONOSTATE pattern. It takes advantage of the ability
for MONOSTATE derivatives to be polymorphic and the fact that MONOSTATE derivatives are themselves
MONOSTATES. This example also shows how difficult it can sometimes be to turn a MONOSTATE into a normal
class. The structure of this solution depends strongly on the MONOSTATE nature of Turnstile. If we needed to
control more than one turnstile with this finite-state machine, the code would require some significant refactoring.

Perhaps you are concerned about the unconventional use of inheritance in this example. Having Unlocked
and Locked derived from Turnstile seems a violation of normal OO principles. However, since Turnstile is

186
www.EBooksWorld.ir

Conclusion

a MONOSTATE, there are no separate instances of it. Thus, Unlocked and Locked aren’t really separate objects.
Instead they are part of the Turnstile abstraction. Unlocked and Locked have access to the same variables and
methods that Turnstile has access to.

Conclusion
It is often necessary to enforce the constraint that a particular object have only a single instantiation. This chapter
has shown two very different techniques. SINGLETON makes use of private constructors, a static variable, and a
static function to control and limit instantiation. MONOSTATE simply makes all variables of the object static.

SINGLETON is best used when you have an existing class that you want to constrain through derivation, and
you don’t mind that everyone will have to call the instance()method to gain access. MONOSTATE is best used
when you want the singular nature of the class to be transparent to the users or when you want to employ polymor-
phic derivatives of the single object.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.
2. Martin, Robert C., et al. Pattern Languages of Program Design 3. Reading, MA: Addison–Wesley, 1998.
3. Ball, Steve, and John Crawford. Monostate Classes: The Power of One. Published in More C++ Gems, compiled by Robert C. Martin.

Cambridge, UK: Cambridge University Press, 2000, p. 223.

187
www.EBooksWorld.ir

188
www.EBooksWorld.ir

17

NULL OBJECT

Faultily faultless, icily regular, splendidly null, Dead perfection, no more.

—Alfred Tennyson (1809–1892)

Consider the following code:

Employee e = DB.getEmployee("Bob");
if (e != null && e.isTimeToPay(today))
 e.pay();

We ask the database for an Employee object named “Bob.” The DB object returns null if no such object
exists. Otherwise, it returns the requested instance of Employee. If the employee exists, and if it is time to pay
him, then we invoke the pay method.

We’ve all written code like this before. The idiom is common because the first expression of the && is evalu-
ated first in C-based languages, and the second is evaluated only if the first is true. Most of us have also been
burned by forgetting to test for null. Common though the idiom may be, it is ugly and error prone.

From Chapter 17 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

189
www.EBooksWorld.ir

Chapter 17 • Null Object

We can alleviate the tendency toward error by having DB.getEmployee throw an exception instead of
returning null. However, try/catch blocks can be even uglier than checking for null. Worse, the use of excep-
tions forces us to declare them in throws clauses. This makes it hard to retrofit exceptions into an existing
application.

We can address these issues by using the NULL OBJECT pattern.1 This pattern often eliminates the need to
check for null, and it can help to simplify the code.

Figure 17-1 shows the structure. Employee becomes an interface that has two implementations. Employee-
Implementation is the normal implementation. It contains all the methods and variables that you would expect
an Employee object to have. When DB.getEmployee finds an employee in the database, it returns an instance of
EmployeeImplementation. NullEmployee is returned only if DB.getEmployee cannot find the employee.

NullEmployee implements all the methods of Employee to do “nothing.” What “nothing” is depends on
the method. For example, one would expect that isTimeToPay would be implemented to return false, since it is
never time to pay a NullEmployee.

Using this pattern, we can change the original code to look like this:

Employee e = DB.getEmployee("Bob");
if (e.isTimeToPay(today))
 e.pay();

This is neither error prone nor ugly. There is a nice consistency to it. DB.getEmployee always returns an
instance of Employee. That instance is guaranteed to behave appropriately, regardless of whether the employee
was found or not.

Of course there will be many cases where we’ll still want to know if DB.getEmployee failed to find an
employee. This can be accomplished by creating a static final variable in Employee that holds the one and
only instance of NullEmployee.

Listing 17-1 shows the test case for NullEmployee. In this case “Bob” does not exist in the database.
Notice that the test case expects isTimeToPay to return false. Notice also that it expects the employee returned
by DB.getEmployee to be Employee.NULL.

Listing 17-1

TestEmployee.java (Partial)

public void testNull() throws Exception
 {
 Employee e = DB.getEmployee("Bob");

1. [PLOPD3], p. 5. This delightful article, by Bobby Woolf, is full of wit, irony and practical advice.

Figure 17-1 NULL OBJECT Pattern

Employee
Implementation

NullEmployee

DB Employee
«interface»

«creates»

«creates»

190
www.EBooksWorld.ir

 if (e.isTimeToPay(new Date()))
 fail();
 assertEquals(Employee.NULL, e);
 }

The DB class is shown in Listing 17-2. Notice that, for the purposes of our test, the getEmployee method
just returns Employee.NULL.

Listing 17-2

DB.java

public class DB
{
 public static Employee getEmployee(String name)
 {
 return Employee.NULL;
 }
}

The Employee interface is shown in Listing 17-3. Notice that it has a static variable named NULL that
holds an anonymous implementation of Employee. This anonymous implementation is the sole instance of the
null employee. It implements isTimeToPay to return false and pay to do nothing.

Listing 17-3

Employee.java

import java.util.Date;
public interface Employee
{
 public boolean isTimeToPay(Date payDate);

 public void pay();

 public static final Employee NULL = new Employee()
 {
 public boolean isTimeToPay(Date payDate)
 {
 return false;
 }

 public void pay()
 {
 }
 };
}

Making the null employee an anonymous inner class is a way to make sure that there is only a single
instance of it. There is no NullEmployee class per se. Nobody else can create other instances of the null
employee. This is a good thing because we want to be able to say things like

if (e == Employee.NULL)

This would be unreliable if it were possible to create many instances of the null employee.

191
www.EBooksWorld.ir

Chapter 17 • Null Object

Conclusion
Those of us who have been using C-based languages for a long time have grown accustomed to functions that
return null or 0 on some kind of failure. We presume that the return value from such functions needs to be tested.
The NULL OBJECT pattern changes this. By using this pattern, we can ensure that functions always return valid
objects, even when they fail. Those objects that represent failure do “nothing.”

Bibliography

1. Martin, Robert, Dirk Riehle, and Frank Buschmann. Pattern Languages of Program Design 3. Reading, MA: Addison–Wesley, 1998.

192
www.EBooksWorld.ir

18

The Payroll Case Study:
Iteration One Begins

“Everything which is in any way beautiful is beautiful in itself,
and terminates in itself, not having praise as part of itself.”

—Marcus Aurelius, circa A.D. 170

Introduction
The following case study describes the first iteration in the development of a simple batch payroll system. You will
find the user stories in this case study to be simplistic. For example, taxes are simply not mentioned. This is typical
of an early iteration. It will provide only a very small part of the business value the customers need.

In this chapter we will do the kind of quick analysis and design session that often takes place at the start of a
normal iteration. The customer has selected the stories for the iteration, and now we have to figure out how we are
going to implement them. Such design sessions are short and cursory, just like this chapter. The UML diagrams
you see here are no more than hasty sketches on a whiteboard. The real design work will take place in the next
chapter, when we work through the unit tests and implementations.

Specification

The following are some notes we took while conversing with our customer about the stories that were selected for
the first iteration:

From Chapter 18 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

193
www.EBooksWorld.ir

Chapter 18 • The Payroll Case Study: Iteration One Begins

• Some employees work by the hour. They are paid an hourly rate that is one of the fields in their employee
record. They submit daily time cards that record the date and the number of hours worked. If they work more
than 8 hours per day, they are paid 1.5 times their normal rate for those extra hours. They are paid every Friday.

• Some employees are paid a flat salary. They are paid on the last working day of the month. Their monthly
salary is one of the fields in their employee record.

• Some of the salaried employees are also paid a commission based on their sales. They submit sales receipts
that record the date and the amount of the sale. Their commission rate is a field in their employee record.
They are paid every other Friday.

• Employees can select their method of payment. They may have their paychecks mailed to the postal address
of their choice; they may have their paychecks held for pickup by the paymaster; or they can request that
their paychecks be directly deposited into the bank account of their choice.

• Some employees belong to the union. Their employee record has a field for the weekly dues rate. Their dues
must be deducted from their pay. Also, the union may assess service charges against individual union mem-
bers from time to time. These service charges are submitted by the union on a weekly basis and must be
deducted from the appropriate employee’s next pay amount.

• The payroll application will run once each working day and pay the appropriate employees on that day. The
system will be told to what date the employees are to be paid, so it will generate payments for records from
the last time the employee was paid up to the specified date.

We could begin by generating the database schema. Clearly this problem could use some kind of relational
database, and the requirements give us a very good idea of what the tables and fields might be. It would be easy to
design a workable schema and then start building some queries. However, this approach will generate an applica-
tion for which the database is the central concern.

Databases are implementation details! Considering the database should be deferred as long as possible. Far
too many applications are inextricably tied to their databases because they were designed with the database in
mind from the beginning. Remember the definition of abstraction: the amplification of the essential and the elimi-
nation of the irrelevant. The database is irrelevant at this stage of the project; it is merely a technique used for stor-
ing and accessing data, nothing more.

Analysis by Use Cases
Instead of starting with the data of the system, let’s start by considering the behavior of the system. After all, it is
the system’s behavior that we are being paid to create.

One way to capture and analyze the behavior of a system is to create use cases. Use cases, as originally
described by Jacobson, are very similar to the notion of user stories in XP. A use case is like a user story that has
been elaborated with a little more detail. Such elaboration is appropriate once the user story has been selected for
implementation in the current iteration.

When we perform use case analysis, we look to the user stories and acceptance tests to find out the kinds of
stimuli that the users of this system provide. Then we try to figure out how the system responds to those stimuli.

For example, here are the user stories that our customer has chosen for the next iteration:

1. Add a new employee
2. Delete an employee
3. Post a time card
4. Post a sales receipt
5. Post a union service charge
6. Change employee details (e.g., hourly rate, dues rate.)
7. Run the payroll for today

194
www.EBooksWorld.ir

Analysis by Use Cases

Let’s convert each of these user stories into an elaborated use case. We don’t need to go into too much
detail—just enough to help us think through the design of the code that fulfills each story.

Adding Employees

Use case 1 hints at an abstraction. There are three forms of the AddEmp transaction, yet all three forms share the
<EmpID>, <name>, and <address> fields. We can use the COMMAND pattern to create an AddEmployee-
Transaction abstract base class with three derivatives: AddHourlyEmployeeTransaction, AddSalaried-
EmployeeTransaction and AddCommissionedEmployeeTransaction. (See Figure 18-1.)

This structure conforms nicely to the Single-Responsibility Principle (SRP) by splitting each job into its own
class. The alternative would be to put all these jobs into a single module. While this might reduce the number of
classes in the system, and therefore make the system simpler, it would also concentrate all the transaction process-
ing code in one place, creating a large and potentially error-prone module.

Use case 1 specifically talks about an employee record, which implies some sort of database. Again our pre-
disposition to databases may tempt us into thinking about record layouts or the field structure in a relational data-
base table, but we should resist these urges. What the use case is really asking us to do is to create an employee.
What is the object model of an employee? A better question might be, What do the three different transactions cre-
ate? In my view, they create three different kinds of employee objects, mimicking the three different kinds of
AddEmp transactions. Figure 18-2 shows a possible structure.

Use Case 1
Add New Employee

A new employee is added by the receipt of an AddEmp transaction. This transaction contains the employee’s
name, address, and assigned employee number. The transaction has three forms:

AddEmp <EmpID> "<name>" "<address>" H <hourly-rate>
AddEmp <EmpID> "<name>" "<address>" S <monthly-salary>
AddEmp <EmpID> "<name>" "<address>" C <monthly-salary> <commission-rate>

The employee record is created with its fields assigned appropriately.

Alternative 1:
An error in the transaction structure

If the transaction structure is inappropriate, it is printed out in an error message, and no action is taken.

Figure 18-1 AddEmployeeTransaction Class Hierarchy

AddEmployee
Transaction

AddHourly
Employee
Transaction

AddSalaried
Employee
Transaction

AddCommissioned
Employee
Transaction

- Name
- EmployeeId
- Address

195
www.EBooksWorld.ir

Chapter 18 • The Payroll Case Study: Iteration One Begins

Deleting Employees

This use case doesn’t give me any design insights at this time, so let’s look at the next.

Posting Time Cards

This use case points out that some transactions apply only to certain kinds of employees, strengthening the
idea that the different kinds should be represented by different classes. In this case, there is also an association
implied between time cards and hourly employees. Figure 18-3 shows a possible static model for this association.

Figure 18-2 Possible Employee Class Hierarchy

Use Case 2
Deleting an Employee

Employees are deleted when a DelEmp transaction is received. The form of this transaction is as follows:

DelEmp <EmpID>

When this transaction is received, the appropriate employee record is deleted.

Alternative 1:
Invalid or unknown EmpID

If the <EmpID> field is not structured correctly, or if it does not refer to a valid employee record, then the
transaction is printed with an error message, and no other action is taken.

Use Case 3
Post a Time Card

On receiving a TimeCard transaction, the system will create a time-card record and associate it with the
appropriate employee record.

TimeCard <Empld> <date> <hours>

Alternative 1:
The selected employee is not hourly

The system will print an appropriate error message and take no further action.

Alternative 2:
An error in the transaction structure

The system will print an appropriate error message and take no further action.

Employee

Hourly
Employee

Salaried
Employee

Commissioned
Employee

196
www.EBooksWorld.ir

Analysis by Use Cases

Posting Sales Receipts

This use case is very similar to use case 3. It implies the structure shown in Figure 18-4.

Posting a Union Service Charge

This use case shows that union members are not accessed through employee IDs. The union maintains its
own identification numbering scheme for union members. Thus, the system must be able to associate union

Figure 18-3 Association between HourlyEmployee and TimeCard

Use Case 4
Posting a Sales Receipt

Upon receiving the SalesReceipt transaction, the system will create a new sales-receipt record and associ-
ate it with the appropriate commissioned employee.

SalesReceipt <EmpID> <date> <amount>

Alternative 1:
The selected employee is not commissioned

The system will print an appropriate error message and take no further action.

Alternative 2:
An error in the transaction structure

The system will print an appropriate error message and take no further action.

Figure 18-4 Commissioned Employees and Sales Receipts

Use Case 5
Posting a Union Service Charge

Upon receiving this transaction, the system will create a service-charge record and associate it with the
appropriate union member.

ServiceCharge <memberID> <amount>

Alternative 1:
Poorly formed transaction

If the transaction is not well formed or if the <memberID> does not refer to an existing union member, then
the transaction is printed with an appropriate error message.

0..*Hourly
Employee

TimeCard

0..*Commissioned
Employee

SalesReceipt

197
www.EBooksWorld.ir

Chapter 18 • The Payroll Case Study: Iteration One Begins

members and employees. There are many different ways to provide this kind of association, so to avoid being arbi-
trary, let’s defer this decision until later. Perhaps constraints from other parts of the system will force our hand one
way or another.

One thing is certain. There is a direct association between union members and their service charges. Figure 18-5
shows a possible static model for this association.

Changing Employee Details

This use case is very revealing. It has told us all the aspects of an employee that must be changeable. The fact
that we can change an employee from hourly to salaried means that the diagram in Figure 18-2 is certainly invalid.
Instead, it would probably be more appropriate to use the STRATEGY pattern for calculating pay. The Employee class
could hold a strategy class named PaymentClassification, as in Figure 18-6. This is an advantage because we
can change the PaymentClassification object without changing any other part of the Employee object. When
an hourly employee is changed to a salaried employee, the HourlyClassification of the corresponding
Employee object is replaced with a SalariedClassification object.

PaymentClassification objects come in three varieties. The HourlyClassification objects main-
tain the hourly rate and a list of TimeCard objects. The SalariedClassification objects maintain the
monthly salary figure. The CommissionedClassification objects maintain a monthly salary, a commission
rate, and a list of SalesReceipt objects. I have used composition relationships in these cases because I believe
that TimeCards and SalesReceipts should be destroyed when the employee is destroyed.

The method of payment must also be changeable. Figure 18-6 implements this idea by using the STRATEGY

pattern and deriving three different kinds of PaymentMethod classes. If an Employee object contains a

Figure 18-5 Union Members and Service Charges

Use Case 6
Changing Employee Details

Upon receiving this transaction, the system will alter one of the details of the appropriate employee record.
There are several possible variations to this transaction.

ChgEmp <EmpID> Name <name> Change Employee Name
ChgEmp <EmpID> Address <address> Change Employee Address
ChgEmp <EmpID> Hourly <hourlyRate> Change to Hourly
ChgEmp <EmpID> Salaried <salary> Change to Salaried
ChgEmp <EmpID> Commissioned <salary> <rate> Change to Commissioned
ChgEmp <EmpID> Hold Hold Paycheck
ChgEmp <EmpID> Direct <bank> <account> Direct Deposit
ChgEmp <EmpID> Mail <address> Mail Paycheck
ChgEmp <EmpID> Member <memberID> Dues <rate> Put Employee in Union
ChgEmp <EmpID> NoMember Remove Employee from Union

Alternative 1:
Transaction Errors

If the structure of the transaction is improper, or <EmpID> does not refer to a real employee, or <memberID>
already refers to a member, then print a suitable error and take no further action.

0..*
UnionMember ServiceCharge

198
www.EBooksWorld.ir

Analysis by Use Cases

MailMethod object, the corresponding employee will have his paychecks mailed to him. The address to which the
checks are mailed is recorded in the MailMethod object. If the Employee object contains a DirectMethod
object, then his pay will be directly deposited into the bank account that is recorded in the DirectMethod object.
If the Employee contains a HoldMethod object, his paychecks will be sent to the paymaster to be held for pickup.

Finally, Figure 18-6 applies the NULL OBJECT pattern to union membership. Each Employee object contains
an Affiliation object, which has two forms. If the Employee contains a NoAffiliation object, then his pay
is not adjusted by any organization other than the employer. However, if the Employee object contains a Union-
Affiliation object, that employee must pay the dues and service charges that are recorded in that
UnionAffiliation object.

This use of these patterns makes this system conform well to the Open-Closed Principle (OCP). The
Employee class is closed against changes in payment method, payment classification, and union affiliation. New
methods, classifications, and affiliations can be added to the system without affecting Employee.

Figure 18-6 is becoming our core model or architecture. It’s at the heart of everything that the payroll system
does. There will be many other classes and designs in the payroll application, but they will all be secondary to this
fundamental structure. Of course, this structure is not cast in stone: It will be evolving along with everything else.

Payday

Figure 18-6 Revised Class Diagram for Payroll -- The Core Model

Use Case 7
Run the Payroll for Today

Upon receiving the Payday transaction, the system finds all those employees that should be paid on the spec-
ified date. The system then determines how much they are owed and pays them according to their selected
payment method.

Payday <date>

Employee

Payment
Classification

Salaried
Classification

HoldMethod

DirectMethod

«interface»
Affiliation

«interface»
Payment
Method

- Bank
- Account

MailMethod

- Address

- Salary

NoAffiliation

UnionAffiliation

- Dues

ServiceCharge
Hourly

Classification

TimeCard SalesReceipt

- HourlyRate

Commissioned
Classification

- CommissionRate
- Salary

0..*

0..* 0..*

199
www.EBooksWorld.ir

Chapter 18 • The Payroll Case Study: Iteration One Begins

Although it is easy to understand the intent of this use case, it is not so simple to determine what impact it
has on the static structure of Figure 18-6. We need to answer several questions.

First, how does the Employee object know how to calculate its pay? Certainly if the employee is hourly, the
system must tally up his time cards and multiply by the hourly rate. If the employee is commissioned, the system
must tally up his sales receipts, multiply by the commission rate, and add the base salary. But where does this get
done? The ideal place seems to be in the PaymentClassification derivatives. These objects maintain the
records needed to calculate pay, so they should probably have the methods for determining pay. Figure 18-7 shows
a collaboration diagram that describes how this might work.

When the Employee object is asked to calculate pay, it refers this request to its PaymentClassification
object. The actual algorithm employed depends on the type of PaymentClassification that the Employee
object contains. Figures 18-8 through 18-10 show the three possible scenarios.

Figure 18-7 Calculating an Employee’s Pay

Figure 18-8 Calculating an Hourly Employee’s Pay

Figure 18-9 Calculating a Commissioned Employee’s Pay

Payday
Transaction

Payment
Classification

Employee

Date

Date

Pay

1:Pay

1.1:CalculatePay

Hourly
Classification

TimeCard

CalculatePay

GetHours
Date

hours

GetDate

for each timecard

date

Commissioned
Classification

SalesReceipt

CalculatePay

GetAmount
Date

amount

GetDate

for each sale receipt

date

200
www.EBooksWorld.ir

Finding the Underlying Abstractions

Reflection: What Have We Learned?
We have learned that a simple use case analysis can provide a wealth of information and insights into the design of
a system. Figures 18-6 through 18-10 came about by thinking about the use cases, that is, thinking about behavior.

Finding the Underlying Abstractions
To use the OCP effectively, we must hunt for abstractions and find
those that underlie the application. Often these abstractions are not
stated or even alluded to by the requirements of the application, or
even the use cases. Requirements and use cases may be too steeped in
details to express the generalities of the underlying abstractions.

What are the underlying abstractions of the Payroll applica-
tion? Let’s look again at the requirements. We see statements such as
“Some employees work by the hour,” “Some employees are paid a
flat salary,” and “Some [...] employees are paid a commission.” This hints at the following generalization: “All
employees are paid, but they are paid by different schemes.” The abstraction here is that “All employees are
paid.” Our model of the PaymentClassification in Figures 18-7 through 18-10 expresses this abstraction
nicely. Thus, this abstraction has already been found among our user stories by doing a very simple use-case
analysis.

The Schedule Abstraction

Looking for other abstractions, we find “They are paid every Friday,” “They are paid on the last working day of the
month,” and “They are paid every other Friday.” This leads us to another generality: “All employees are paid
according to some schedule.” The abstraction here is the notion of the schedule. It should be possible to ask an
Employee object whether a certain date is its payday. The use cases barely mention this. The requirements associ-
ate an employee’s schedule with his payment classification. Specifically, hourly employees are paid weekly, sala-
ried employees are paid monthly, and employees receiving commissions are paid biweekly; however, is this
association essential? Might not the policy change one day so that employees could select a particular schedule or
so that employees belonging to different departments or different divisions could have different schedules? Might
not the schedule policy change independently of the payment policy? Certainly, this seems likely.

If, as the requirements imply, we delegated the issue of schedule to the PaymentClassification class,
then our class could not be closed against issues of change in schedule. When we changed payment policy, we
would also have to test schedule. When we changed schedules, we would also have to test payment policy. Both
the OCP and the SRP would be violated.

An association between schedule and payment policy could lead to bugs in which a change to a particular
payment policy caused incorrect scheduling of certain employees. Bugs like this may make sense to programmers,
but they strike fear in the hearts of managers and users. They fear, and rightly so, that if schedules can be broken
by a change to payment policy, then any change made anywhere might cause problems in any other unrelated part
of the system. They fear that they cannot predict the effects of a change. When effects cannot be predicted,
confidence is lost and the program assumes the status of “dangerous and unstable” in the minds of its managers
and users.

Figure 18-10 Calculating a Salaried Employee’s Pay

Salaried
Classification

1:CalculatePay

Date Pay

201
www.EBooksWorld.ir

Chapter 18 • The Payroll Case Study: Iteration One Begins

Despite the essential nature of the schedule abstraction, our use-case analysis failed to give us any direct
clues about its existence. To spot it required careful consideration of the requirements and an insight into the wiles
of the user community. Overreliance on tools and procedures, and underreliance on intelligence and experience are
recipes for disaster.

Figures 18-11 and 18-12 show the static and dynamic models for the schedule abstraction. As you can see,
we’ve employed the STRATEGY pattern yet again. The Employee class contains the abstract PaymentSchedule
class. There are three varieties of PaymentSchedule that correspond to the three known schedules by which
employees are paid.

Payment Methods

Another generalization that we can make from the requirements is “All employees receive their pay by some
method.” The abstraction is the PaymentMethod class. Interestingly enough, this abstraction is already expressed
in Figure 18-6.

Affiliations

The requirements imply that employees may have affiliations with a union; however, the union may not be the only
organization that has a claim to some of an employee’s pay. Employees might want to make automatic contribu-
tions to certain charities or have their dues to professional associations paid automatically. The generalization
therefore becomes “The employee may be affiliated with many organizations that should be automatically paid
from the employee’s paycheck.”

The corresponding abstraction is the Affiliation class that is shown in Figure 18-6. That figure, however,
does not show the Employee containing more than one Affiliation, and it shows the presence of a
NoAffiliation class. This design does not quite fit the abstraction we now think we need. Figures 18-13 and 18-14
show the static and dynamic models that represent the Affiliation abstraction.

The list of Affiliation objects has obviated the need to use the NULL OBJECT pattern for unaffiliated
employees. Now, if the employee has no affiliation, his or her list of affiliations will simply be empty.

Figure 18-11 Static Model of a Schedule Abstraction

Figure 18-12 Dynamic Model of Schedule Abstraction

Payment
Schedule

Weekly
Schedule

Biweekly
Schedule

Monthly
Schedule

Employee
itsSchedule

Employee
Payment
Schedule

isPayDay(date)
IsPayday(date)

202
www.EBooksWorld.ir

Conclusion

Conclusion
At the beginning of an iteration it is not uncommon to see the team assemble in front of a whiteboard and reason
together about the design for the user stories that were selected for that iteration. Such a quick design session typ-
ically lasts less than an hour. The resulting UML diagrams, if any, may be left on the whiteboard, or erased. They
are usually not commited to paper. The purpose of the session is to start the thinking process, and give the devel-
opers a common mental model to work from. The goal is not to nail down the design.

This chapter has been the textual equivalent to such a quick design Session.

Bibliography

1. Jacobson, Ivar. Object-Oriented Software Engineering, A Use-Case-Driven Approach. Wokingham, England: Addison–Wesley, 1992.

Figure 18-13 Static Structure of Affiliation Abstraction

Figure 18-14 Dynamic Structure of Affiliation Abstraction

0..*

itsAffiliations
Employee Affiliation

0..*UnionAffiliation

- Dues

ServiceCharge

- Date
- Amount

Employee
Payment

Classification

pay = CalculatePay(date)
pay = CalculatePay(date)

[foreach affiliation] fee = GetFee(date)

Affiliation

203
www.EBooksWorld.ir

204
www.EBooksWorld.ir

19

The Payroll Case Study:
Implementation

It’s long past time we started writing the code that supports and verifies the designs we’ve been spinning. I’ll be
creating that code in very small incremental steps, but I’ll show it to you only at convenient points in the text.
Don’t let the fact that you only see fully formed snapshots of code mislead you into thinking that I wrote it in that
form. In fact, between each batch of code you see, there will have been dozens of edits, compiles and test cases,
each one making a tiny evolutionary change in the code.

You’ll also see quite a bit of UML. Think of this UML as a quick diagram that I sketch on a whiteboard to
show you, my pair partner, what I have in mind. UML makes a convenient medium for you and me to communi-
cate by.

Figure 19-1 shows that we represent transactions as an abstract base class named Transaction, which has
an instance method named Execute(). This is, of course, the COMMAND pattern. The implementation of the
Transaction class is shown in Listing 19-1.

Figure 19-1 Transaction Interface

Transaction
Parser

+ Execute()
«creates»

«interface»
Transaction

From Chapter 19 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

205
www.EBooksWorld.ir

Chapter 19 • The Payroll Case Study: Implementation

Listing 19-1

Transaction.h

#ifndef TRANSACTION_H
#define TRANSACTION_H

class Transaction
{
 public:
 virtual ~Transaction();
 virtual void Execute() = 0;
};

#endif

Adding Employees
Figure 19-2 shows a potential structure for the transactions that add employees. Note that it is within these transac-
tions that the employees’ payment schedule is associated with their payment classification. This is appropriate,
since the transactions are contrivances instead of part of the core model. Thus, the core model is unaware of the
association; the association is merely part of one of the contrivances and can be changed at any time. For example,
we could easily add a transaction that allows us to change employee schedules.

Figure 19-2 Static Model of AddEmployeeTransaction

«interface»
Transaction

«creates»

«creates»

«creates»

«global» Payroll
Database

AddEmployee
Transaction

- empid
- itsAddress
- itsName

- hourlyRate

AddHourly
Employee

Employee

- salary

AddSalaried
Employee

- salary
- commissionRate

+ setSchedule
+ setClassification
+ setMethod

Add
Commissioned
Employee

HoldMethod

Weekly
Schedule

Hourly
Classification

«creates»

Monthly
Schedule

Salaried
Classification

«creates»

Biweekly
Schedule

Commissioned
Classification

206
www.EBooksWorld.ir

Adding Employees

Note, too, that the default payment method is to hold the paycheck with the paymaster. If an employee
wants a different payment method, the change must be made with the appropriate ChgEmp transaction.

As usual, we begin writing code by writing tests first. Listing 19-2 is a test case that shows that the
AddSalariedTransaction is working correctly. The code to follow will make that test case pass.

Listing 19-2

PayrollTest::TestAddSalariedEmployee

void PayrollTest::TestAddSalariedEmployee()
{
 int empId = 1;
 AddSalariedEmployee t(empId, "Bob", "Home", 1000.00);
 t.Execute();

 Employee* e = GpayrollDatabase.GetEmployee(empId);
 assert("Bob" == e->GetName());

 PaymentClassification* pc = e->GetClassification();
 SalariedClassification* sc = dynamic_cast<SalariedClassification*>(pc);
 assert(sc);

 assertEquals(1000.00, sc->GetSalary(), .001);
 PaymentSchedule* ps = e->GetSchedule();
 MonthlySchedule* ms = dynamic_cast<MonthlySchedule*>(ps);
 assert(ms);
 PaymentMethod* pm = e->GetMethod();
 HoldMethod* hm = dynamic_cast<HoldMethod*>(pm);
 assert(hm);
}

The Payroll Database

The AddEmployeeTransaction class uses a class called PayrollDatabase. This class maintains all the exist-
ing Employee objects in a Dictionary that are keyed by empID. It also maintains a Dictionary that maps
union memberIDs to empIDs. The structure for this class appears in Figure 19-3. PayrollDatabase is an exam-
ple of the FACADE pattern (page 173).

Listings 19-3 and 19-4 show a rudimentary implementation of the PayrollDatabase. This implementation
is meant to help us with our initial test cases. It does not yet contain the dictionary that maps member IDs to
Employee instances.

Figure 19-3 Static Structure of PayrollDatabase

Payroll
Database

Dictionary

Dictionary

EmpID
Employee

MemberID
EmpID

207
www.EBooksWorld.ir

Chapter 19 • The Payroll Case Study: Implementation

Listing 19-3

PayrollDatabase.h

#ifndef PAYROLLDATABASE_H
#define PAYROLLDATABASE_H

#include <map>

class Employee;

class PayrollDatabase
{
 public:
 virtual ~PayrollDatabase();
 Employee* GetEmployee(int empId);
 void AddEmployee(int empid, Employee*);
 void clear() {itsEmployees.clear();}
 private:
 map<int, Employee*> itsEmployees;
};

#endif

Listing 19-4

PayrollDatabase.cpp

#include "PayrollDatabase.h"
#include "Employee.h"

PayrollDatabase GpayrollDatabase;

PayrollDatabase::~PayrollDatabase()
{
}

Employee* PayrollDatabase::GetEmployee(int empid)
{
 return itsEmployees[empid];
}

void PayrollDatabase::AddEmployee(int empid, Employee* e)
{
 itsEmployees[empid] = e;
}

In general, I consider database implementations to be details. Decisions about those details should be
deferred as long as possible. Whether this particular database will be implemented with an RDBMS, flat files, or
an OODBMS is irrelevant at this point. Right now, I’m just interested in creating the API that will provide data-
base services to the rest of the application. I’ll find appropriate implementations for the database later.

Deferring details about the database is an uncommon, but very rewarding, practice. Database decisions can
usually wait until we have much more knowledge about the software and its needs. By waiting, we avoid the prob-
lem of putting too much infrastructure into the database. Rather, we implement just enough database facility for
the needs of the application.

208
www.EBooksWorld.ir

Adding Employees

Using TEMPLATE METHOD to Add Employees

Figure 19-4 shows the dynamic model for adding an employee. Note that the AddEmployeeTransaction object
sends messages to itself in order to get the appropriate PaymentClassification and PaymentSchedule
objects. These messages are implemented in the derivatives of the AddEmployeeTransaction class. This is an
application of the TEMPLATE METHOD pattern.

Listings 19-5 and 19-6 show the implementation of the TEMPLATE METHOD pattern in the
AddEmployeeTransaction class. This class implements the Execute() method to call two pure virtual func-
tions that will be implemented by derivatives. These functions, GetSchedule() and GetClassification(),
return the PaymentSchedule and PaymentClassification objects that the newly created Employee needs.
The Execute() method then binds these objects to the Employee and saves the Employee in the
PayrollDatabase.

Listing 19-5

AddEmployeeTransaction.h

#ifndef ADDEMPLOYEETRANSACTION_H
#define ADDEMPLOYEETRANSACTION_H

#include "Transaction.h"
#include <string>

class PaymentClassification;
class PaymentSchedule;

Figure 19-4 Dynamic Model for Adding an Employee

AddEmployee
Transaction

Payroll
Database

Hold
Method

Execute

Employee

name, address

GetClassification

GetSchedule

SetClassification

SetSchedule

SetMethod

AddEmployee(employee)

209
www.EBooksWorld.ir

Chapter 19 • The Payroll Case Study: Implementation

class AddEmployeeTransaction : public Transaction
{
 public:
 virtual ~AddEmployeeTransaction();
 AddEmployeeTransaction(int empid, string name, string address);
 virtual PaymentClassification* GetClassification() const = 0;
 virtual PaymentSchedule* GetSchedule() const = 0;
 virtual void Execute();

 private:
 int itsEmpid;
 string itsName;
 string itsAddress;
};
#endif

Listing 19-6

AddEmployeeTransaction.cpp

#include "AddEmployeeTransaction.h"
#include "HoldMethod.h"
#include "Employee.h"
#include "PayrollDatabase.h"

class PaymentMethod;
class PaymentSchedule;
class PaymentClassification;

extern PayrollDatabase GpayrollDatabase;

AddEmployeeTransaction::~AddEmployeeTransaction()
{
}

AddEmployeeTransaction::
AddEmployeeTransaction(int empid, string name, string address)
 : itsEmpid(empid)
 , itsName(name)
 , itsAddress(address)
{
}

void AddEmployeeTransaction::Execute()
{
 PaymentClassification* pc = GetClassification();
 PaymentSchedule* ps = GetSchedule();
 PaymentMethod* pm = new HoldMethod();
 Employee* e = new Employee(itsEmpid, itsName, itsAddress);
 e->SetClassification(pc);
 e->SetSchedule(ps);
 e->SetMethod(pm);
 GpayrollDatabase.AddEmployee(itsEmpid, e);
}

210
www.EBooksWorld.ir

Adding Employees

Listings 19-7 and 19-8 show the implementation of the AddSalariedEmployee class. This class derives
from AddEmployeeTransaction and implements the GetSchedule() and GetClassification() methods
to pass back the appropriate objects to AddEmployeeTransaction::Execute().

Listing 19-7

AddSalariedEmployee.h

#ifndef ADDSALARIEDEMPLOYEE_H
#define ADDSALARIEDEMPLOYEE_H

#include "AddEmployeeTransaction.h"

class AddSalariedEmployee : public AddEmployeeTransaction
{
 public:
 virtual ~AddSalariedEmployee();
 AddSalariedEmployee(int empid, string name,
 string address, double salary);
 PaymentClassification* GetClassification() const;
 PaymentSchedule* GetSchedule() const;

 private:
 double itsSalary;
};
#endif

Listing 19-8

AddSalariedEmployee.cpp

#include "AddSalariedEmployee.h"
#include "SalariedClassification.h"
#include "MonthlySchedule.h"

AddSalariedEmployee::~AddSalariedEmployee()
{
}

AddSalariedEmployee::
AddSalariedEmployee(int empid, string name,
 string address, double salary)
 : AddEmployeeTransaction(empid, name, address)
 , itsSalary(salary)
{
}

PaymentClassification*
AddSalariedEmployee::GetClassification() const
{
 return new SalariedClassification(itsSalary);
}

PaymentSchedule* AddSalariedEmployee::GetSchedule() const
{
 return new MonthlySchedule();
}

211
www.EBooksWorld.ir

Chapter 19 • The Payroll Case Study: Implementation

I leave the AddHourlyEmployee and AddCommissionedEmployee as exercises for the reader. Remember
to write your test cases first.

Deleting Employees
Figures 19-5 and 19-6 present the static and dynamic models for the transactions that delete employees.

Listing 19-9 shows the test case for deleting an employee. Listings 19-10 and 19-11 show the implementation of
DeleteEmployeeTransaction. This is a very typical implementation of the COMMAND pattern. The constructor
stores the data that the Execute() method eventually operates upon.

Listing 19-9

PayrollTest::TestDeleteEmployee()

void PayrollTest::TestDeleteEmployee()
{
 cerr << "TestDeleteEmployee" << endl;
 int empId = 3;
 AddCommissionedEmployee t(empId, "Lance", "Home", 2500, 3.2);
 t.Execute();
 {
 Employee* e = GpayrollDatabase.GetEmployee(empId);
 assert(e);
 }
 DeleteEmployeeTransaction dt(empId);
 dt.Execute();
 {
 Employee* e = GpayrollDatabase.GetEmployee(empId);
 assert(e == 0);
 }
}

Figure 19-5 Static Model for DeleteEmployee Transaction

Figure 19-6 Dynamic Model for DeleteEmployee Transaction

«interface»
Transaction

- empid

Delete
Employee Payroll

Database

Delete
Employee

Transaction

Execute
DeleteEmployee(empid)

Payroll
Database

212
www.EBooksWorld.ir

Deleting Employees

Listing 19-10

DeleteEmployeeTransaction.h

#ifndef DELETEEMPLOYEETRANSACTION_H
#define DELETEEMPLOYEETRANSACTION_H

#include "Transaction.h"

class DeleteEmployeeTransaction : public Transaction
{
 public:
 virtual ~DeleteEmployeeTransaction();
 DeleteEmployeeTransaction(int empid);
 virtual void Execute();
 private:
 int itsEmpid;
};
#endif

Listing 19-11

DeleteEmployeeTransaction.cpp

#include "DeleteEmployeeTransaction.h"
#include "PayrollDatabase.h"

extern PayrollDatabase GpayrollDatabase;
DeleteEmployeeTransaction::~DeleteEmployeeTransaction()
{
}

DeleteEmployeeTransaction::DeleteEmployeeTransaction(int empid)
 : itsEmpid(empid)
{
}

void DeleteEmployeeTransaction::Execute()
{
 GpayrollDatabase.DeleteEmployee(itsEmpid);
}

Global Variables

By now you have noticed the GpayrollDatabase global. For decades, textbooks and teachers have been discouraging
the use of global variables with good reason. Still, global variables are not intrinsically evil or harmful. This particular
situation is an ideal choice for a global variable. There will only ever be one instance of the PayrollDatabase class,
and it needs to be known by a very wide audience.

You might think that this could be better accomplished by using the SINGLETON or MONOSTATE patterns. It
is true that these would serve the purpose. However, they do so by using global variables themselves. A SINGLE-

TON or MONOSTATE is, by definition, a global entity. In this case I felt that a SINGLETON or MONOSTATE would
smell of Needless Complexity. It’s easier to simply keep the database instance in a global.

213
www.EBooksWorld.ir

Chapter 19 • The Payroll Case Study: Implementation

Time Cards, Sales Receipts, and Service Charges
Figure 19-7 shows the static structure for the transaction that posts time cards to employees. Figure 19-8 shows the
dynamic model. The basic idea is that the transaction gets the Employee object from the PayrollDatabase,
asks the Employee for its PaymentClassification object, and then creates and adds a TimeCard object to
that PaymentClassification.

Notice that we cannot add TimeCard objects to general PaymentClassification objects; we can
only add them to HourlyClassification objects. This implies that we must downcast the Payment-
Classification object received from the Employee object to an HourlyClassification object. This is a
good use for the dynamic_cast operator in C++, as shown later in Listing 19-15.

Listing 19-12 shows one of the test cases that verifies that time cards can be added to hourly employees. This
test code simply creates an hourly employee and adds it to the database. Then it creates a TimeCard-
Transaction and invokes Execute(). Then it checks the employee to see if the HourlyClassification con-
tains the appropriate TimeCard.

Figure 19-7 Static Structure of TimeCardTransaction

Figure 19-8 Dynamic Model for Posting a TimeCard

«interface»
Transaction

«creates»

TimeCard
Transaction

- Date
- Hours
- empid

Employee
TimeCard

Payroll
Database

Hourly
Classification

Payment
Classification

- Date
- Hours

TimeCard
Transaction

Payroll
Database

pc:Hourly
Classification

Employee

Execute
GetEmployee

empid Employee

Hours, Date

tc:TimeCard

pc is downcast from
PaymentClassification.

pc = GetPaymentClassification()

AddTimeCard(tc)

214
www.EBooksWorld.ir

Time Cards, Sales Receipts, and Service Charges

Listing 19-12

PayrollTest::TestTimeCardTransaction()

void PayrollTest::TestTimeCardTransaction()
{
 cerr << "TestTimeCardTransaction" << endl;
 int empId = 2;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 TimeCardTransaction tct(20011031, 8.0, empId);
 tct.Execute();
 Employee* e = GpayrollDatabase.GetEmployee(empId);
 assert(e);
 PaymentClassification* pc = e->GetClassification();
 HourlyClassification* hc =
 dynamic_cast<HourlyClassification*>(pc);
 assert(hc);
 TimeCard* tc = hc->GetTimeCard(20011031);
 assert(tc);
 assertEquals(8.0, tc->GetHours());
}

Listing 19-13 shows the implementation of the TimeCard class. There’s not much to this class right now.
It’s just a data class. Notice that I am using a long integer to represent dates. I’m doing this because I don’t have a
convenient Date class. I’m probably going to need one pretty soon, but I don’t need it now. I don’t want to distract
myself from the task at hand, which is to get the current test case working. Eventually I will write a test case that
will require a true Date class. When that happens, I’ll go back and retrofit it into TimeCard.

Listing 19-13

TimeCard.h

#ifndef TIMECARD_H
#define TIMECARD_H

class TimeCard
{
 public:
 virtual ~TimeCard();
 TimeCard(long date, double hours);
 long GetDate() {return itsDate;}
 double GetHours() {return itsHours;}
 private:
 long itsDate;
 double itsHours;
};
#endif

Listings 19-14 and 19-15 show the implementation of the TimeCardTransaction class. Note the use of
simple string exceptions. This is not particularly good long-term practice, but it suffices this early in development.
After we get some idea of what the exceptions really ought to be, we can come back and create meaningful excep-
tion classes. Note also that the TimeCard instance is created only when we are sure we aren’t going to throw an
exception, so the throwing of the exception can’t leak memory. It’s very easy to create code that leaks memory or
resources when throwing exceptions, so be careful. 1

1. And run, don’t walk, to buy Exceptional C++ and More Exceptional C++, by Herb Sutter. These two books will save you much
anguish, wailing, and gnashing of teeth over exceptions in C++.

215
www.EBooksWorld.ir

Chapter 19 • The Payroll Case Study: Implementation

Listing 19-14

TimeCardTransaction.h

#ifndef TIMECARDTRANSACTION_H
#define TIMECARDTRANSACTION_H

#include "Transaction.h"

class TimeCardTransaction : public Transaction
{
 public:
 virtual ~TimeCardTransaction();
 TimeCardTransaction(long date, double hours, int empid);

 virtual void Execute();

 private:
 int itsEmpid;
 long itsDate;
 double itsHours;
};
#endif

Listing 19-15

TimeCardTransaction.cpp

#include "TimeCardTransaction.h"
#include "Employee.h"
#include "PayrollDatabase.h"
#include "HourlyClassification.h"
#include "TimeCard.h"

extern PayrollDatabase GpayrollDatabase;

TimeCardTransaction::~TimeCardTransaction()
{
}

TimeCardTransaction::TimeCardTransaction(long date,
 double hours,
 int empid)
 : itsDate(date)
 , itsHours(hours)
 , itsEmpid(empid)
{
}

void TimeCardTransaction::Execute()
{
 Employee* e = GpayrollDatabase.GetEmployee(itsEmpid);
 if (e){
 PaymentClassification* pc = e->GetClassification();
 if (HourlyClassification* hc = dynamic_cast<HourlyClassification*>(pc)) {
 hc->AddTimeCard(new TimeCard(itsDate, itsHours));
 } else

216
www.EBooksWorld.ir

Time Cards, Sales Receipts, and Service Charges

 throw("Tried to add timecard to non-hourly employee");
 } else
 throw("No such employee.");
}

Figures 19-9 and 19-10 show a similar design for the transaction that posts sales receipts to a commissioned
employee. I’ve left the implementation of these classes as an exercise.

Figures 19-11 and 19-12 show the design for the transaction that posts service charges to union members.
These designs point out a mismatch between the transaction model and the core model that we have created.

Our core Employee object can be affiliated with many different organizations, but the transaction model assumes
that any affiliation must be a union affiliation. Thus, the transaction model provides no way to identify a particular
kind of affiliation. Instead, it simply assumes that if we are posting a service charge, then the employee has a union
affiliation.

The dynamic model addresses this dilemma by searching the set of Affiliation objects contained by the
Employee object for a UnionAffiliation object. It then adds the ServiceCharge object to that
UnionAffiliation.

Figure 19-9 Static Model for SalesReceiptTransaction

Figure 19-10 Dynamic Model for SalesReceiptTransaction

«interface»
Transaction

SalesReceipt
Transaction

- Date
- Amount
- empid

Employee

Commissioned
Classification

SalesReceipt

«interface»
Payment

Classification

- Date
- Amount

Payroll
Database

SalesReceipt
Transaction

Payroll
Database

pc:Commissioned
Classification

Employee

Execute
GetEmployee

empid Employee

Amount, Date

sr:SalesReceipt

pc is downcast from
PaymentClassification.

pc = GetPaymentClassification()

AddSalesReceipt(sr)

217
www.EBooksWorld.ir

Chapter 19 • The Payroll Case Study: Implementation

Listing 19-16 shows the test case for the ServiceChargeTransaction. It simply creates an hourly
employee and adds a UnionAffiliation to it. It also makes sure that the appropriate member ID is registered
with the PayrollDatabase. Then it creates a ServiceChargeTransaction and executes it. Finally it makes
sure that the appropriate ServiceCharge was indeed added to Employee’s UnionAffiliation.

Listing 19-16

PayrollTest::TestAddServiceCharge()

void PayrollTest::TestAddServiceCharge()
{
 cerr << "TestAddServiceCharge" << endl;
 int empId = 2;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 Employee* e = GpayrollDatabase.GetEmployee(empId);
 assert(e);
 UnionAffiliation* af = new UnionAffiliation(12.5);
 e->SetAffiliation(af);
 int memberId = 86; // Maxwell Smart
 GpayrollDatabase.AddUnionMember(memberId, e);
 ServiceChargeTransaction sct(memberId, 20011101, 12.95);

Figure 19-11 Static Model for ServiceChargeTransaction

Figure 19-12 Dynamic Model for ServiceChargeTransaction

«interface»
Transaction

ServiceCharge
Transaction

- Date
- Amount
- memberID

Employee

Union
Affiliation

ServiceCharge

«interface»
Affiliation

- Date
- Amount

Payroll
Database

ServiceCharge
Transaction

Payroll
Database

affiliation:
UnionAffiliationEmployee

Execute
GetUnionMember

memberID

Amount, Date

sc:ServiceCharge

affiliation is downcast to
UnionAffiliation from
Affiliation

affiliations = getAffiliations()

Employee

AddServiceCharge(sc)

Search through affiliations to find an affiliation
that can be downcast to a UnionAffiliation

218
www.EBooksWorld.ir

Time Cards, Sales Receipts, and Service Charges

 sct.Execute();
 ServiceCharge* sc = af->GetServiceCharge(20011101);
 assert(sc);
 assertEquals(12.95, sc->GetAmount(), .001);
}

Code v. UML. When I drew the UML in Figure 19-12, I thought that replacing NoAffiliation with a
list of affiliations was a better design. I thought it was more flexible and less complex. After all, I could add new
affiliations any time I wanted, and I didn’t have to create the NoAffiliation class. However, when writing the
test case in Listing 19-16, I realized that calling SetAffiliation on Employee was better than calling
AddAffiliation. After all, the requirements do not ask that an employee have more than one Affiliation, so
there is no need to employ dynamic_cast to select between potentially many kinds. Doing so would be more
complex than necessary.

This is an example of why doing too much UML without verifying it in code can be dangerous. The code
can tell you things about your design that the UML cannot. Here, I was putting structures into the UML that
weren’t needed. Maybe one day they’d come in handy, but they have to be maintained between now and then. The
cost of that maintenance may not be worth the benefit.

In this case, even though the cost of maintaining the dynamic_cast is relatively slight, I’m not going to
employ it. Its much simpler to implement without a list of Affiliation objects. So I’ll keep the NULL OBJECT

pattern in place with the NoAffiliation class.
Listings 19-17 and 19-18 show the implementation of the ServiceChargeTransaction. It is indeed

much simpler without the loop looking for UnionAffiliation objects. It simply gets the Employee from the
database, downcasts its Affillation to a UnionAffilliation, and adds the ServiceCharge to it.

Listing 19-17

ServiceChargeTransaction.h

#ifndef SERVICECHARGETRANSACTION_H
#define SERVICECHARGETRANSACTION_H

#include "Transaction.h"

class ServiceChargeTransaction : public Transaction
{
 public:
 virtual ~ServiceChargeTransaction();
 ServiceChargeTransaction(int memberId, long date, double charge);
 virtual void Execute();

 private:
 int itsMemberId;
 long itsDate;
 double itsCharge;
};
#endif

Listing 19-18

ServiceChargeTransaction.cpp

#include "ServiceChargeTransaction.h"
#include "Employee.h"

219
www.EBooksWorld.ir

220 Chapter 19 • The Payroll Case Study: Implementation

#include "ServiceCharge.h"
#include "PayrollDatabase.h"
#include "UnionAffiliation.h"

extern PayrollDatabase GpayrollDatabase;

ServiceChargeTransaction::~ServiceChargeTransaction()
{
}

ServiceChargeTransaction::
ServiceChargeTransaction(int memberId, long date, double charge)
:itsMemberId(memberId)
, itsDate(date)
, itsCharge(charge)
{
}

void ServiceChargeTransaction::Execute()
{
 Employee* e = GpayrollDatabase.GetUnionMember(itsMemberId);
 Affiliation* af = e->GetAffiliation();
 if (UnionAffiliation* uaf = dynamic_cast<UnionAffiliation*>(af)) {
 uaf->AddServiceCharge(itsDate, itsCharge);
 }
}

Changing Employees

Figures 19-13 and 19-14 show the static structure for the transactions
that change the attributes of an employee. This structure is easily
derived from Use Case 6. All the transactions take an EmpID argu-
ment, so we can create a top-level base class called Change-
EmployeeTransaction. Below this base class are the classes that
change single attributes, such as ChangeNameTransaction and
ChangeAddressTransaction. The transactions that change classi-
fications have a commonality of purpose, in that they all modify the same field of the Employee object. Thus, they
can be grouped together under the abstract base, ChangeClassificationTransaction. The same is true of the
transactions that change the payment and the affiliations. This can be seen by the structure of Change-
MethodTransaction and ChangeAffiliationTransaction.

Figure 19-15 shows the dynamic model for all the change transactions. Again we see the TEMPLATE

METHOD pattern in use. In every case, the Employee object corresponding to the EmpID must be retrieved from
the PayrollDatabase. Thus, the Execute function of ChangeEmployeeTransaction implements this behav-
ior and then sends the Change message to itself. This method will be declared as virtual and implemented in the
derivatives, as shown in Figures 19-16 and 19-17.

Listing 19-19 shows the test case for the ChangeNameTransaction. This test case is very simple. It uses
the AddHourlyEmployee transaction to create an hourly employee named Bill. It then creates and executes a
ChangeNameTransaction that should change the employee’s name to Bob. Finally, it fetches the Employee
instance from the PayrollDatabase and verifies that the name has been changed.

220
www.EBooksWorld.ir

Changing Employees

Figure 19-13 Static Model for ChangeEmployeeTransaction

Figure 19-14 Static Model for ChangeEmployeeTransaction (cont.)

«interface»
Payment
Schedule

«interface»
Payment

Classification

Employee

Change
Employee

Transaction
- empid

Payroll
Database

ChangeHourly
Transaction

- hourlyRate

ChangeSalaried
Transaction

- salary

ChangeAddress
Transaction

- address

Change
Classification
Transaction

ChangeName
Transaction

- name

- salary
- commissionRate

Change
Commissioned
Transaction

Weekly
Schedule

Hourly
Classification

Monthly
Schedule

Salaried
Classification

«creates»«creates»«creates»

Biweekly
Schedule

Commissioned
Classification

«interface»
Transaction

«interface»
Payment
Method

Change
Employee

Transaction

- empid

ChangeDirect
Transaction

- bank
- account

DirectMethod

- bank
- account

MailMethod

- address

Payroll
Database

Change
Method

Transaction

Change
Affiliation

Transaction

«interface»
Affiliation

Employee

ChangeHold
Transaction

HoldMethod

ChangeMail
Transaction

- address

Change
Member

Transaction

Change
Unaffiliated
Transaction

Union
Affiliation

- dues

«creates» «creates» «creates» «creates»

No
Affiliation

«creates»

221
www.EBooksWorld.ir

222 Chapter 19 • The Payroll Case Study: Implementation

Listing 19-19

PayrollTest::TestChangeNameTransaction()

void PayrollTest::TestChangeNameTransaction()
{
 cerr << "TestChangeNameTransaction" << endl;
 int empId = 2;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 ChangeNameTransaction cnt(empId, "Bob");
 cnt.Execute();
 Employee* e = GpayrollDatabase.GetEmployee(empId);
 assert(e);
 assert("Bob" == e->GetName());
}

Listings 19-20 and 19-21 show the implementation of the abstract base class ChangeEmployee-
Transaction. The structure of the TEMPLATE METHOD pattern is clearly in evidence. The Execute() method
simply reads the appropriate Employee instance from the PayrollDatabase and, if successful, invokes the pure
virtual Change() function.

Listing 19-20

ChangeEmployeeTransaction.h

#ifndef CHANGEEMPLOYEETRANSACTION_H
#define CHANGEEMPLOYEETRANSACTION_H

#include "Transaction.h"
#include "Employee.h"

Figure 19-15 Dynamic Model for ChangeEmployeeTransaction

Figure 19-16 Dynamic Model for ChangeNameTransaction

Figure 19-17 Dynamic Model for ChangeAddressTransaction

Change
Employee

Transaction

1:Execute

«global»

1.2:Change

1.1:GetEmployee

empid Employee

Employee

Payroll
Database

ChangeName
Transaction

1:Change

«parameter»

Employee

Employee

1.1:SetName
name

ChangeAddress
Transaction

1:Change

Employee

Employee
«parameter»

1.1:SetAddress

address

222
www.EBooksWorld.ir

Changing Employees

class ChangeEmployeeTransaction : public Transaction
{
 public:
 ChangeEmployeeTransaction(int empid);
 virtual ~ChangeEmployeeTransaction();
 virtual void Execute();
 virtual void Change(Employee&) = 0;

 private:
 int itsEmpId;
};

#endif

Listing 19-21

ChangeEmployeeTransaction.cpp

#include "ChangeEmployeeTransaction.h"
#include "Employee.h"
#include "PayrollDatabase.h"

extern PayrollDatabase GpayrollDatabase;

ChangeEmployeeTransaction::~ChangeEmployeeTransaction()
{
}

ChangeEmployeeTransaction::ChangeEmployeeTransaction(int empid)
: itsEmpId(empid)
{
}

void ChangeEmployeeTransaction::Execute()
{
 Employee* e = GpayrollDatabase.GetEmployee(itsEmpId);
 if (e != 0)
 Change(*e);
}

Listings 19-22 and 19-23 show the implementation of the ChangeNameTransaction. The second half of
the TEMPLATE METHOD can easily be seen. The Change() method is implemented to change the name of the
Employee argument. The structure of the ChangeAddressTransaction is very similar and is left as an
exercise.

Listing 19-22

ChangeEmployeeTransaction.h

#ifndef CHANGENAMETRANSACTION_H
#define CHANGENAMETRANSACTION_H

#include "ChangeEmployeeTransaction.h"
#include <string>

223
www.EBooksWorld.ir

224 Chapter 19 • The Payroll Case Study: Implementation

class ChangeNameTransaction : public ChangeEmployeeTransaction
{
 public:
 virtual ~ChangeNameTransaction();
 ChangeNameTransaction(int empid, string name);
 virtual void Change(Employee&);

 private:
 string itsName;
};

#endif

Listing 19-23

ChangeNameTransaction.cpp

#include "ChangeNameTransaction.h"

ChangeNameTransaction::~ChangeNameTransaction()
{
}

ChangeNameTransaction::ChangeNameTransaction(int empid,
 string name)
: ChangeEmployeeTransaction(empid)
, itsName(name)
{
}

void ChangeNameTransaction::Change(Employee& e)
{
 e.SetName(itsName);
}

Changing Classification

Figure 19-18 shows how the dynamic behavior of ChangeClassificationTransaction is envisioned. The
TEMPLATE METHOD pattern is used yet again. The transactions must create a new PaymentClassification
object and then hand it to the Employee object. This is accomplished by sending the GetClassification mes-

Figure 19-18 Dynamic Model of the ChangeClassificationTransaction

Change
Classification
Transaction

emp:Employee

Change(emp)

paymentClassification :=
GetClassification()

SetClassification(paymentClassification)

paymentSchedule :=
GetSchedule()

SetSchedule(paymentSchedule)

224
www.EBooksWorld.ir

Changing Employees

sage to itself. This abstract method is implemented in each of the classes derived from ChangeClassification-
Transaction, as shown in Figures 19-19 through 19-21.

Listing 19-24 shows the test case for ChangeHourlyTransaction. The test case uses an
AddCommissionedEmployee transaction to create a commissioned employee. It then creates a Change-
HourlyTransaction and executes it. It fetches the changed employee and verifies that its Payment-
Classification is an HourlyClassification with the appropriate hourly rate and that its
PaymentSchedule is a WeeklySchedule.

Figure 19-19 Dynamic Model of ChangeHourlyTransaction

Figure 19-20 Dynamic Model of ChangeSalariedTransaction

Figure 19-21 Dynamic Model of ChangeCommissionedTransaction

ChangeHourly
Transaction

GetClassification

hc

hourlyRate
hc:

Hourly
Classification

GetSchedule

ws

ws:
WeeklySchedule

ChangeSalaried
Transaction

GetClassification

sc

salary

GetSchedule

ms

ms:
MonthlySchedule

sc:
Salaried

Classification

GetClassification

cc

commissionRate,
salary

GetSchedule

bws

cc:
Commissioned
Classification

bws:
Biweekly
Schedule

Change
Commissioned

Transaction

225
www.EBooksWorld.ir

226 Chapter 19 • The Payroll Case Study: Implementation

Listing 19-24

PayrollTest::TestChangeHourlyTransaction()

void PayrollTest::TestChangeHourlyTransaction()
{
 cerr << "TestChangeHourlyTransaction" << endl;
 int empId = 3;
 AddCommissionedEmployee t(empId, "Lance", "Home", 2500, 3.2);
 t.Execute();
 ChangeHourlyTransaction cht(empId, 27.52);
 cht.Execute();
 Employee* e = GpayrollDatabase.GetEmployee(empId);
 assert(e);
 PaymentClassification* pc = e->GetClassification();
 assert(pc);
 HourlyClassification* hc =
 dynamic_cast<HourlyClassification*>(pc);
 assert(hc);
 assertEquals(27.52, hc->GetRate(), .001);
 PaymentSchedule* ps = e->GetSchedule();
 WeeklySchedule* ws = dynamic_cast<WeeklySchedule*>(ps);
 assert(ws);
}

Listings 19-25 and 19-26 show the implementation of the abstract base class ChangeClassification-
Transaction. Once again, the TEMPLATE METHOD pattern is easy to pick out. The Change() method invokes
the two pure virtual functions, GetClassification() and GetSchedule(). It uses the return values from
these functions to set the classification and schedule of the Employee.

Listing 19-25

ChangeClassificationTransaction.h

#ifndef CHANGECLASSIFICATIONTRANSACTION_H
#define CHANGECLASSIFICATIONTRANSACTION_H

#include "ChangeEmployeeTransaction.h"

class PaymentClassification;
class PaymentSchedule;

class ChangeClassificationTransaction : public ChangeEmployeeTransaction
{
 public:
 virtual ~ChangeClassificationTransaction();
 ChangeClassificationTransaction(int empid);
 virtual void Change(Employee&);
 virtual PaymentClassification* GetClassification() const = 0;
 virtual PaymentSchedule* GetSchedule() const = 0;
};
#endif

226
www.EBooksWorld.ir

Changing Employees

Listing 19-26

ChangeClassificationTransaction.cpp

#include "ChangeClassificationTransaction.h"

ChangeClassificationTransaction::~ChangeClassificationTransaction()
{
}

ChangeClassificationTransaction::ChangeClassificationTransaction(int empid)
: ChangeEmployeeTransaction(empid)
{
}

void ChangeClassificationTransaction::Change(Employee& e)
{
 e.SetClassification(GetClassification());
 e.SetSchedule(GetSchedule());
}

Listings 19-27 and 19-28 show the implementation of the ChangeHourlyTransaction class. This class
completes the TEMPLATE METHOD pattern by implementing the GetClassification() and GetSchedule()
methods that it inherited from ChangeClassificationTransaction. It implements GetClassification()
to return a newly created HourlyClassification. It implements GetSchedule() to return a newly created
WeeklySchedule.

Listing 19-27

ChangeHourlyTransaction.h

#ifndef CHANGEHOURLYTRANSACTION_H
#define CHANGEHOURLYTRANSACTION_H

#include "ChangeClassificationTransaction.h"

class ChangeHourlyTransaction : public ChangeClassificationTransaction
{
 public:
 virtual ~ChangeHourlyTransaction();
 ChangeHourlyTransaction(int empid, double hourlyRate);
 virtual PaymentSchedule* GetSchedule() const;
 virtual PaymentClassification* GetClassification() const;

 private:
 double itsHourlyRate;
};

#endif

Listing 19-28

ChangeHourlyTransaction.cpp

#include "ChangeHourlyTransaction.h"
#include "WeeklySchedule.h"
#include "HourlyClassification.h"

227
www.EBooksWorld.ir

228 Chapter 19 • The Payroll Case Study: Implementation

ChangeHourlyTransaction::~ChangeHourlyTransaction()
{
}

ChangeHourlyTransaction::ChangeHourlyTransaction(int empid, double hourlyRate)
: ChangeClassificationTransaction(empid)
, itsHourlyRate(hourlyRate)
{
}

PaymentSchedule* ChangeHourlyTransaction::GetSchedule() const
{
 return new WeeklySchedule();
}

PaymentClassification* ChangeHourlyTransaction::GetClassification() const
{
 return new HourlyClassification(itsHourlyRate);
}

As always, the ChangeSalariedTransaction and ChangeCommissionedTransaction are left to the
reader as an exercise.

A similar mechanism is employed for the implementation of ChangeMethodTransaction. The abstract
GetMethod method is used to select the proper derivative of PaymentMethod, which is then handed to the
Employee object. (See Figures 19-22 through 19-25.)

Figure 19-22 Dynamic Model of ChangeMethodTransaction

Figure 19-23 Dynamic Model of ChangeDirectTransaction

Change
Method

Transaction
emp:Employee

Change(emp)

paymentMethod := GetMethod()

SetMethod(paymentMethod)

Change
Direct

Transaction

GetMethod
bank, account

dm
dm:

DirectMethod

228
www.EBooksWorld.ir

Changing Employees

Figure 19-24 Dynamic Model of
ChangeMailTransaction

GetMethod
address

mm

Change
Mail

Transaction

mm:
MailMethod

Figure 19-25 Dynamic Model of
ChangeHoldTransaction

GetMethod
address

hm

Change
Hold

Transaction

hm:
HoldMethod

The implementation of these classes turned out to be straightforward and unsurprising. They too are left as
an exercise.

Figure 19-26 shows the implementation of the ChangeAffiliationTransaction. Once again, we use
the TEMPLATE METHOD pattern to select the Affiliation derivative that should be handed to the Employee
object. (See Figures 19-27 through 19-29.)

Figure 19-26 Dynamic Model of
ChangeAffiliationTransaction

Change
Affiliation

Transaction
emp:Employee

Change(emp)

aff := GetAffiliation()

SetAffiliation(aff)

Figure 19-27 Dynamic Model of
ChangeMemberTransaction

Change
Member

Transaction

GetAffiliation

ua

dues
ua:

UnionAffiliation

What Was I Smoking?

I got quite a surprise when I went to implement this design. Look closely at the dynamic diagrams for the affilia-
tion transactions. Can you spot the problem?

I began the implementation, as always, by writing the test case for ChangeMemberTransaction. You can
see this test case in Listing 19-29. The test case starts out straightforward enough. It creates an hourly employee
named Bill and then creates and executes a ChangeMemberTransaction to put Bill in the union. Then it checks
to see that Bill has a UnionAffiliation bound to him and that the UnionAffiliation has the right dues rate.

Figure 19-28 Dynamic Model of ChangeUnaffiliatedTransaction

GetAffiliation

na

Change
Unaffiliated
Transaction

na:
NoAffiliation

229
www.EBooksWorld.ir

230 Chapter 19 • The Payroll Case Study: Implementation

Listing 19-29

PayrollTest::TestChangeMemberTransaction()

void PayrollTest::TestChangeMemberTransaction()
{
 cerr << "TestChangeMemberTransaction" << endl;
 int empId = 2;
 int memberId = 7734;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 ChangeMemberTransaction cmt(empId, memberId, 99.42);
 cmt.Execute();
 Employee* e = GpayrollDatabase.GetEmployee(empId);
 assert(e);
 Affiliation* af = e->GetAffiliation();
 assert(af);
 UnionAffiliation* uf = dynamic_cast<UnionAffiliation*>(af);
 assert(uf);
 assertEquals(99.42, uf->GetDues(), .001);
 Employee* member = GpayrollDatabase.GetUnionMember(memberId);
 assert(member);
 assert(e == member);
}

The surprise is hidden in the last few lines of the test case. Those lines make sure that the Payroll-
Database has recorded Bill’s membership in the union. Nothing in the existing UML diagrams makes sure this
happens. The UML is only concerned with the appropriate Affiliation derivative being bound to the
Employee. I didn’t notice the deficit at all. Did you?

I merrily coded the transactions as per the diagrams and then watched the unit test fail. Once the failure
occurred, it was obvious what I had neglected. What was not obvious was the solution to the problem. How do I
get the membership to be recorded by ChangeMemberTransaction, but erased by ChangeUnaffiliated-
Transaction?

The answer was to add another pure virtual function to ChangeAffiliationTransaction named
RecordMembership(Employee*). This function is implemented in ChangeMemberTransaction to bind the
memberId to the Employee instance. In the ChangeUnaffiliatedTransaction it is implemented to erase the
membership record.

Listings 19-30 and 19-31 show the resulting implementation of the abstract base class Change-
AffiliationTransaction. Again, the use of the TEMPLATE METHOD pattern is obvious.

Listing 19-30

ChangeAffiliationTransaction.h

#ifndef CHANGEAFFILIATIONTRANSACTION_H
#define CHANGEAFFILIATIONTRANSACTION_H

#include "ChangeEmployeeTransaction.h"

class ChangeAffiliationTransaction: public ChangeEmployeeTransaction
{
 public:
 virtual ~ChangeAffiliationTransaction();

230
www.EBooksWorld.ir

Changing Employees

 ChangeAffiliationTransaction(int empid);
 virtual Affiliation* GetAffiliation() const = 0;
 virtual void RecordMembership(Employee*) = 0;
 virtual void Change(Employee&);
};

#endif

Listing 19-31

ChangeAffiliationTransaction.cpp

#include "ChangeAffiliationTransaction.h"

ChangeAffiliationTransaction::~ChangeAffiliationTransaction()
{
}

ChangeAffiliationTransaction::ChangeAffiliationTransaction(int empid)
: ChangeEmployeeTransaction(empid)
{
}

void ChangeAffiliationTransaction::Change(Employee& e)
{
 RecordMembership(&e);
 e.SetAffiliation(GetAffiliation());
}

Listing 19-32 and Listing 19-33 show the implementation of ChangeMemberTransaction. This is not par-
ticularly complicated or interesting. On the other hand, the implementation of ChangeUnaffiliated-
Transaction in Listings 19-34 and 19-35 is a bit more substantial. The RecordMembership function has to
decide whether or not the current employee is a union member. If so, it then gets the memberId from the
UnionAffiliation and erases the membership record.

Listing 19-32

ChangeMemberTransaction.h

#ifndef CHANGEMEMBERTRANSACTION_H
#define CHANGEMEMBERTRANSACTION_H

#include "ChangeAffiliationTransaction.h"

class ChangeMemberTransaction : public ChangeAffiliationTransaction
{
 public:
 virtual ~ChangeMemberTransaction();
 ChangeMemberTransaction(int empid, int memberid, double dues);
 virtual Affiliation* GetAffiliation() const;
 virtual void RecordMembership(Employee*);
 private:
 int itsMemberId;
 double itsDues;
};
#endif

231
www.EBooksWorld.ir

232 Chapter 19 • The Payroll Case Study: Implementation

Listing 19-33

ChangeMemberTransaction.cpp

#include "ChangeMemberTransaction.h"
#include "UnionAffiliation.h"
#include "PayrollDatabase.h"

extern PayrollDatabase GpayrollDatabase;

ChangeMemberTransaction::~ChangeMemberTransaction()
{
}

ChangeMemberTransaction::
ChangeMemberTransaction(int empid, int memberid, double dues)
: ChangeAffiliationTransaction(empid)
, itsMemberId(memberid)
, itsDues(dues)
{
}

Affiliation* ChangeMemberTransaction::GetAffiliation() const
{
 return new UnionAffiliation(itsMemberId, itsDues);
}

void ChangeMemberTransaction::RecordMembership(Employee* e)
{
 GpayrollDatabase.AddUnionMember(itsMemberId, e);
}

Listing 19-34

ChangeUnaffiliatedTransaction.h

#ifndef CHANGEUNAFFILIATEDTRANSACTION_H
#define CHANGEUNAFFILIATEDTRANSACTION_H

#include "ChangeAffiliationTransaction.h"

class ChangeUnaffiliatedTransaction : public ChangeAffiliationTransaction
{
 public:
 virtual ~ChangeUnaffiliatedTransaction();
 ChangeUnaffiliatedTransaction(int empId);
 virtual Affiliation* GetAffiliation() const;
 virtual void RecordMembership(Employee*);
};
#endif

Listing 19-35

ChangeUnaffiliatedTransaction.cpp

#include "ChangeUnaffiliatedTransaction.h"
#include "NoAffiliation.h"
#include "UnionAffiliation.h"
#include "PayrollDatabase.h"

extern PayrollDatabase GpayrollDatabase;

232
www.EBooksWorld.ir

Paying Employees

ChangeUnaffiliatedTransaction::~ChangeUnaffiliatedTransaction()
{
}

ChangeUnaffiliatedTransaction::ChangeUnaffiliatedTransaction(int empId)
: ChangeAffiliationTransaction(empId)
{
}

Affiliation* ChangeUnaffiliatedTransaction::GetAffiliation() const
{
 return new NoAffiliation();
}

void ChangeUnaffiliatedTransaction::RecordMembership(Employee* e)
{
 Affiliation* af = e->GetAffiliation();
 if (UnionAffiliation* uf = dynamic_cast<UnionAffiliation*>(af))
 {
 int memberId = uf->GetMemberId();
 GpayrollDatabase.RemoveUnionMember(memberId);
 }
}

I can’t say that I’m very pleased with this design. It bothers me that the ChangeUnaffiliated-
Transaction must know about UnionAffiliation. I could solve this by putting RecordMembership
and EraseMembership abstract methods in the Affiliation class. However, this would force
UnionAffiliation and NoAffiliation to know about the PayrollDatabase. And I’m not very happy
about that either.2

Still, the implementation as it stands is pretty simple and only slightly violates the OCP. The nice thing is
that very few modules in the system know about ChangeUnaffiliatedTransaction, so its extra dependencies
aren’t doing very much harm.

Paying Employees
Finally, it is time to consider the transaction that is at the root of
this application: the transaction that instructs the system to pay the
appropriate employees. Figure 19-29 shows the static structure
of the PaydayTransaction class. Figures 19-30 through 19-33
describe the dynamic behavior.

These few dynamic models express a great deal of polymor-
phic behavior. The algorithm employed by the CalculatePay
message depends on the kind of PaymentClassification that
the employee object contains. The algorithm used to determine if
a date is a payday depends on the kind of PaymentSchedule that the Employee contains. The algorithm used to
send the payment to the Employee depends on the type of the PaymentMethod object. This high degree of
abstraction allows the algorithms to be closed against the addition of new kinds of payment classifications, sched-
ules, affiliations, or payment methods.

2. I could use the VISITOR pattern (page 387) to solve this problem, but that would probably be way overengineered.

233
www.EBooksWorld.ir

234 Chapter 19 • The Payroll Case Study: Implementation

Figure 19-29 Static Model of
PaydayTransaction

«interface»
Transaction

- date

Payday
Transaction

Payroll
Database

Employee

Figure 19-30 Dynamic Model for PaydayTransaction

Payday
Transaction

Execute
GetEmployees

For each employee

list<Employee*>

Payroll
Database

Employee

Payday(date)

Figure 19-31 Dynamic Model Scenario: “Payday is not today.”

Figure 19-32 Dynamic Model Scenario: “Payday is today.”

Figure 19-33 Dynamic Model Scenario: Posting Payment

Employee
Payment
Schedule

Payday(date)
IsPayDay(date)

NO

Employee
Payment
Schedule

Payment
Classification

Payment
Method

Payday(date)
IsPayDay(date)

Yes

Pay(amount)

Post(date)

amount := CalculatePay(date)

Post(date)
Post(date)

Payment
Classification

AffiliationEmployee

Post(date)

For each affiliation in Employee

234
www.EBooksWorld.ir

Paying Employees

The algorithms depicted in Figure 19-32 and Figure 19-33 introduce the concept of posting. After the correct
pay amount has been calculated and sent to the Employee, the payment is posted; that is, the records involved in
the payment are updated. Thus, we can define the CalculatePay method as calculating the pay from the last
posting until the specified date.

Do We Want Developers Making Business Decisions?

Where did this notion of posting come from? It certainly wasn’t mentioned in the user stories or use cases. As it
happens, I cooked it up as a way to solve a problem that I perceived. I was concerned that the Payday method
might be called multiple times with the same date, or with a date in the same pay period, so I wanted to make sure
that the employee was not paid more than once. I did this on my own initiative, without asking my customer. It just
seemed the right thing to do.

In effect, I have made a business decision. I have decided that multiple runs of the payroll program will pro-
duce different results. I should have asked my customer or project manager about this, since they might have very
different ideas.

In checking with the customer, I find that the idea of posting goes against his intent.3 The customer wants to
be able to run the payroll system and then review the paychecks. If any of them are wrong, the customer wants to
correct the payroll information and run the payroll program again. They tell me that I should never consider time
cards or sales receipts for dates outside the current pay period.

So, we have to ditch the posting scheme. It seemed like a good idea at the time, but it was not what the cus-
tomer wanted.

Paying Salaried Employees

There are two test cases in Listing 19-36. They test whether a salaried employee is being paid appropriately. The
first test case makes sure the employee is paid on the last day of the month. The second test case makes sure the
employee is not paid if it is not the last day of the month.

Listing 19-36

PayrollTest::TestPaySingleSalariedEmployee & co.

void PayrollTest::TestPaySingleSalariedEmployee()
{
 cerr << "TestPaySingleSalariedEmployee" << endl;
 int empId = 1;
 AddSalariedEmployee t(empId, "Bob", "Home", 1000.00);
 t.Execute();
 Date payDate(11,30,2001);
 PaydayTransaction pt(payDate);
 pt.Execute();
 Paycheck* pc = pt.GetPaycheck(empId);
 assert(pc);
 assert(pc->GetPayDate() == payDate);
 assertEquals(1000.00, pc->GetGrossPay(), .001);
 assert("Hold" == pc->GetField("Disposition"));
 assertEquals(0.0, pc->GetDeductions(), .001);
 assertEquals(1000.00, pc->GetNetPay(), .001);
}

3. OK, I am the customer.

235
www.EBooksWorld.ir

236 Chapter 19 • The Payroll Case Study: Implementation

void PayrollTest::TestPaySingleSalariedEmployeeOnWrongDate()
{
 cerr << "TestPaySingleSalariedEmployeeWrongDate" << endl;
 int empId = 1;
 AddSalariedEmployee t(empId, "Bob", "Home", 1000.00);
 t.Execute();
 Date payDate(11,29,2001);
 PaydayTransaction pt(payDate);
 pt.Execute();
 Paycheck* pc = pt.GetPaycheck(empId);
 assert(pc == 0);
}

Remember back in Listing 19-13, when I was implementing the TimeCard class, I used a long integer to
represent the date? Well, now I have a need for a real Date class. These two test cases will not pass unless I can tell
whether the pay date is the last day of the month.

It turns out that I wrote a Date class about 10 years ago for a C++ class I was teaching. So I dug through my
archives and found it on an old sparcstation that I had laying around.4 I moved it to my development environment
and managed to get it to compile in minutes. I found this surprising, since I had written it to work in Linux, but was
now using it in Windows 2000. There were a couple of small bugs to fix, and I had to replace my homegrown
string class with the STL string class, but in the end the effort was minimal.

Listing 19-37 shows the Execute() function of PaydayTransaction. It iterates through all the
Employee objects in the database. It asks each employee if the date on this transaction is its pay date. If so, it cre-
ates a new paycheck for the employee and tells the employee to fill in its fields.

Listing 19-37

PaydayTransaction::Execute()

void PaydayTransaction::Execute()
{
 list<int> empIds;
 GpayrollDatabase.GetAllEmployeeIds(empIds);

 list<int>::iterator i = empIds.begin();
 for (; i != empIds.end(); i++) {
 int empId = *i;
 if (Employee* e = GpayrollDatabase.GetEmployee(empId)) {
 if (e->IsPayDate(itsPayDate)) {
 Paycheck* pc = new Paycheck(itsPayDate);
 itsPaychecks[empId] = pc;
 e->Payday(*pc);
 }
 }
 }
}

Listing 19-38 shows a fragment of MonthlySchedule.cpp. Notice that it implements IsPayDate to
return true only if the argument date is the last day of the month. This algorithm points out why I needed the
Date class. Doing this kind of simple date calculation is very difficult without a good Date class.

4. The original oma.com. This was a sparcstation that I purchased for $6,000 from a company that had bought it for a project and then
cancelled the project. Back in 1994 that was a real good deal. The fact that the machine is still quietly running on the Object Mentor
network is a testimony to how well built it was.

236
www.EBooksWorld.ir

Paying Employees

Listing 19-38

MonthlySchedule.cpp (fragment)

namespace
{
 bool IsLastDayOfMonth(const Date& date)
 {
 int m1 = date.GetMonth();
 int m2 = (date+1).GetMonth();
 return (m1 != m2);
 }
}

bool MonthlySchedule::IsPayDate(const Date& payDate) const
{
 return IsLastDayOfMonth(payDate);
}

Listing 19-39 shows the implementation of Employee::PayDay(). This function is the generic algorithm
for calculating and dispatching payment for all employees. Notice the rampant use of the STRATEGY pattern. All
detailed calculations are deferred to the contained strategy classes: itsClassification, itsAffiliation,
and itsPaymentMethod.

Listing 19-39

Employee::PayDay()

void Employee::Payday(Paycheck& pc)
{
 double grossPay = itsClassification->CalculatePay(pc);
 double deductions = itsAffiliation->CalculateDeductions(pc);
 double netPay = grossPay - deductions;
 pc.SetGrossPay(grossPay);
 pc.SetDeductions(deductions);
 pc.SetNetPay(netPay);
 itsPaymentMethod->Pay(pc);
}

Paying Hourly Employees

Getting the hourly employees paid is a good example of the incrementalism of test-first design. I started with very
trivial test cases and worked my way up to ever more complex ones. I’ll show the test cases below, and then I’ll
show you the production code that resulted from them.

Listing 19-40 shows the simplest case. We add an hourly employee to the database and then pay him. Since
there aren’t any time cards, we expect the paycheck to have a zero value. The utility function ValidateHourly-
Paycheck represents a refactoring that happened later. At first, that code was simply buried inside the test func-
tion. This test case worked without making any changes to the rest of the code.

Listing 19-40

TestPaySingleHourlyEmployeeNoTimeCards

void PayrollTest::TestPaySingleHourlyEmployeeNoTimeCards()
{
 cerr << "TestPaySingleHourlyEmployeeNoTimeCards" << endl;
 int empId = 2;

237
www.EBooksWorld.ir

238 Chapter 19 • The Payroll Case Study: Implementation

 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 Date payDate(11,9,2001); // Friday
 PaydayTransaction pt(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, 0.0);
}

void PayrollTest::ValidateHourlyPaycheck(PaydayTransaction& pt,
 int empid,
 const Date& payDate,
 double pay)
{
 Paycheck* pc = pt.GetPaycheck(empid);
 assert(pc);
 assert(pc->GetPayDate() == payDate);
 assertEquals(pay, pc->GetGrossPay(), .001);
 assert("Hold" == pc->GetField("Disposition"));
 assertEquals(0.0, pc->GetDeductions(), .001);
 assertEquals(pay, pc->GetNetPay(), .001);
}

Listing 19-41 shows two test cases. The first tests whether we can pay an employee after adding a single
time card. The second tests whether we can pay overtime for a card that has more than 8 hours on it. Of course, I
didn’t write these two test cases at the same time. Instead, I wrote the first one and got it working, and then I wrote
the second one.

Listing 19-41

Test...OneTimeCard

void PayrollTest::TestPaySingleHourlyEmployeeOneTimeCard()
{
 cerr << "TestPaySingleHourlyEmployeeOneTimeCard" << endl;
 int empId = 2;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 Date payDate(11,9,2001); // Friday

 TimeCardTransaction tc(payDate, 2.0, empId);
 tc.Execute();
 PaydayTransaction pt(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, 30.5);
}

void
PayrollTest::TestPaySingleHourlyEmployeeOvertimeOneTimeCard()
{
 cerr << "TestPaySingleHourlyEmployeeOvertimeOneTimeCard" << endl;
 int empId = 2;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 Date payDate(11,9,2001); // Friday

 TimeCardTransaction tc(payDate, 9.0, empId);
 tc.Execute();

238
www.EBooksWorld.ir

Paying Employees

 PaydayTransaction pt(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, (8 + 1.5) * 15.25);
}

Getting the first test case working was a matter of changing HourlyClassification::CalculatePay to
loop through the time cards for the employee, add up the hours, and multiply by the pay rate. Getting the second
test working forced me to refactor the function to calculate straight and overtime hours.

The test case in Listing 19-42 makes sure that we don’t pay hourly employees unless the Payday-
Transaction is constructed with a Friday.

Listing 19-42

TestPaySingleHourlyEmployeeOnWrongDate

void PayrollTest::TestPaySingleHourlyEmployeeOnWrongDate()
{
 cerr << "TestPaySingleHourlyEmployeeOnWrongDate" << endl;
 int empId = 2;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 Date payDate(11,8,2001); // Thursday

 TimeCardTransaction tc(payDate, 9.0, empId);
 tc.Execute();
 PaydayTransaction pt(payDate);
 pt.Execute();

 Paycheck* pc = pt.GetPaycheck(empId);
 assert(pc == 0);
}

Listing 19-43 is a test case that makes sure we can calculate the pay for an employee who has more than one
time card.

Listing 19-43

TestPaySingleHourlyEmployeeTwoTimeCards

void PayrollTest::TestPaySingleHourlyEmployeeTwoTimeCards()
{
 cerr << "TestPaySingleHourlyEmployeeTwoTimeCards" << endl;
 int empId = 2;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 Date payDate(11,9,2001); // Friday

 TimeCardTransaction tc(payDate, 2.0, empId);
 tc.Execute();
 TimeCardTransaction tc2(Date(11,8,2001), 5.0, empId);
 tc2.Execute();
 PaydayTransaction pt(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, 7*15.25);
}

239
www.EBooksWorld.ir

240 Chapter 19 • The Payroll Case Study: Implementation

Finally, the test case in Listing 19-44 proves that we will only pay an employee for time cards in the current
pay period. Time cards from other pay periods are ignored.

Listing 19-44

TestPaySingleHourlyEmployeeWithTimeCardsSpanningTwoPayPeriods

void PayrollTest::
TestPaySingleHourlyEmployeeWithTimeCardsSpanningTwoPayPeriods()
{
 cerr << "TestPaySingleHourlyEmployeeWithTimeCards"
 "SpanningTwoPayPeriods" << endl;
 int empId = 2;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.25);
 t.Execute();
 Date payDate(11,9,2001); // Friday
 Date dateInPreviousPayPeriod(11,2,2001);

 TimeCardTransaction tc(payDate, 2.0, empId);
 tc.Execute();
 TimeCardTransaction tc2(dateInPreviousPayPeriod, 5.0, empId);
 tc2.Execute();
 PaydayTransaction pt(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, 2*15.25);
}

The code that makes all this work was grown incrementally, one test case at a time. The structure you see in
the code that follows evolved from test case to test case. Listing 19-45 shows the appropriate fragments of
HourlyClassification.cpp. We simply loop through the time cards. For each time card, we check to see if it
is in the pay period. If so, then we calculate the pay it represents.

Listing 19-45

HourlyClassification.cpp (Fragment)

double HourlyClassification::CalculatePay(Paycheck& pc) const
{
 double totalPay = 0;
 Date payPeriod = pc.GetPayDate();
 map<Date, TimeCard*>::const_iterator i;
 for (i=itsTimeCards.begin(); i != itsTimeCards.end(); i++) {
 TimeCard * tc = (*i).second;
 if (IsInPayPeriod(tc, payPeriod))
 totalPay += CalculatePayForTimeCard(tc);
 }
 return totalPay;
}

bool HourlyClassification::IsInPayPeriod(TimeCard* tc, const Date& payPeriod) const
{
 Date payPeriodEndDate = payPeriod;
 Date payPeriodStartDate = payPeriod - 5;
 Date timeCardDate = tc->GetDate();
 return (timeCardDate >= payPeriodStartDate) &&
 (timeCardDate <= payPeriodEndDate);
}

240
www.EBooksWorld.ir

Paying Employees

double HourlyClassification::
CalculatePayForTimeCard(TimeCard* tc) const
{
 double hours = tc->GetHours();
 double overtime = max(0.0, hours - 8.0);
 double straightTime = hours - overtime;
 return straightTime * itsRate + overtime * itsRate * 1.5;
}

Listing 19-46 shows that the WeeklySchedule only pays on Fridays.

Listing 19-46

WeeklySchedule::IsPayDate

bool WeeklySchedule::IsPayDate(const Date& theDate) const
{
 return theDate.GetDayOfWeek() == Date::friday;
}

I leave calculating the pay for commissioned employees to you. There shouldn’t be any big surprises. As a
slightly more interesting exercise, allow time cards to be posted on the weekends, and calculate overtime correctly.

Pay Periods: A Design Problem

Now it’s time to implement the union dues and service charges. I’m contemplating a test case that will add a sala-
ried employee, convert it into a union member, and then pay the employee and ensure that the dues were subtracted
from his pay. I’ve coded this in Listing 19-47.

Listing 19-47

PayrollTest::TestSalariedUnionMemberDues

void PayrollTest::TestSalariedUnionMemberDues()
{
 cerr << "TestSalariedUnionMemberDues" << endl;
 int empId = 1;
 AddSalariedEmployee t(empId, "Bob", "Home", 1000.00);
 t.Execute();
 int memberId = 7734;
 ChangeMemberTransaction cmt(empId, memberId, 9.42);
 cmt.Execute();
 Date payDate(11,30,2001);
 PaydayTransaction pt(payDate);
 pt.Execute();
 ValidatePaycheck(pt, empId, payDate, 1000.0 - ???);
}

Notice the ??? in the last line of the test case. What should I put there? The user stories tell me that union
dues are weekly, but salaried employees are paid monthly. How many weeks are in each month? Should I just mul-
tiply the dues by four? That’s not very accurate. I’ll ask the customer what he wants.5

The customer tells me that union dues are accrued every Friday. So what I need to do is count the number of
Fridays in the pay period and multiply by the weekly dues. There are five Fridays in November, 2001—the month
that the test case is written for. So I can modify the test case appropriately.

5. And so Bob talks to himself yet again. Go to www.google.com/groups and look up “Schizophrenic Robert Martin.”

241
www.EBooksWorld.ir

242 Chapter 19 • The Payroll Case Study: Implementation

Counting the Fridays in a pay period implies that I need to know what the starting and ending dates of the
pay period are. I have done this calculation before in the function IsInPayPeriod in Listing 19-45 (and you
probably wrote a similar one for the CommissionedClassification). This function is used by the
CalculatePay function of the HourlyClassification object to ensure that only time cards from the pay
period are tallied. Now it seems that the UnionAffiliation object must call this function too.

But wait! What is this function doing in the HourlyClassification class? We’ve already determined that
the association between the payment schedule and the payment classification is accidental. The function that deter-
mines the pay period ought to be in the PaymentSchedule class, not in the PaymentClassification class!

It is interesting that our UML diagrams didn’t help us catch this problem. The problem only surfaced when I
started thinking about the test cases for UnionAffiliation. This is yet another example of how necessary cod-
ing feedback is to any design. Diagrams can be useful, but reliance on them without feedback from the code is
risky business.

So how do we get the pay period out of the PaymentSchedule hierarchy and into the Payment-
Classification and Affiliation hierarchies? These hierarchies do not know anything about each other. We
could put the pay period dates into the Paycheck object. Right now, the Paycheck just has the end date of the pay
period. We ought to be able to get the start date in there, too.

Listing 19-48 shows the change made to PaydayTransaction::Execute(). Notice that when the
Paycheck is created, it is passed both the start and end dates of the pay period. If you jump ahead to Listing 19-55
you will see that it is the PaymentSchedule that calculates both. The changes to Paycheck should be obvious.

Listing 19-48

PaydayTransaction::Execute()

void PaydayTransaction::Execute()
{
 list<int> empIds;
 GpayrollDatabase.GetAllEmployeeIds(empIds);

 list<int>::iterator i = empIds.begin();
 for (; i != empIds.end(); i++) {
 int empId = *i;
 if (Employee* e = GpayrollDatabase.GetEmployee(empId)) {
 if (e->IsPayDate(itsPayDate)) {
 Paycheck* pc =
 new Paycheck(e->GetPayPeriodStartDate(itsPayDate), itsPayDate);
 itsPaychecks[empId] = pc;
 e->Payday(*pc);
 }
 }
 }
}

The two functions in HourlyClassification and CommissionedClassification that determined if
TimeCards and SalesReceipts were within the pay period have been merged and moved into the base class
PaymentClassification. (See Listing 19-49.)

Listing 19-49

PaymentClassification::IsInPayPeriod(...)

bool PaymentClassification::
IsInPayPeriod(const Date& theDate, const Paycheck& pc) const

242
www.EBooksWorld.ir

Paying Employees

{
 Date payPeriodEndDate = pc.GetPayPeriodEndDate();
 Date payPeriodStartDate = pc.GetPayPeriodStartDate();
 return (theDate >= payPeriodStartDate)
 && (theDate <= payPeriodEndDate);
}

Now we are ready to calculate the employee’s union dues in UnionAffilliation::Calculate-
Deductions. The code in Listing 19-50 shows how this is done. The two dates that define the pay period are
extracted from the paycheck and passed to a utility function that counts the number of Fridays between them. This
number is then multiplied by the weekly dues rate to calculate the dues for the pay period.

Listing 19-50

UnionAffiliation::CalculateDeductions()

namespace
{
 int NumberOfFridaysInPayPeriod(const Date& payPeriodStart,
 const Date& payPeriodEnd)
 {
 int fridays = 0;
 for (Date day = payPeriodStart; day <= payPeriodEnd; day++)
 {
 if (day.GetDayOfWeek() == Date::friday)
 fridays++;
 }
 return fridays;
 }
}

double UnionAffiliation::
CalculateDeductions(Paycheck& pc) const
{
 double totalDues = 0;

 int fridays =
 NumberOfFridaysInPayPeriod(pc.GetPayPeriodStartDate(),
 pc.GetPayPeriodEndDate());
 totalDues = itsDues * fridays;
 return totalDues;
}

The last two test cases have to do with union service charges. The first test case is shown in Listing 19-51. It
makes sure that we deduct service charges appropriately.

Listing 19-51

PayrollTest::TestHourlyUnionMemberServiceCharge

void PayrollTest::TestHourlyUnionMemberServiceCharge()
{
 cerr << "TestHourlyUnionMemberServiceCharge" << endl;
 int empId = 1;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.24);
 t.Execute();

243
www.EBooksWorld.ir

244 Chapter 19 • The Payroll Case Study: Implementation

 int memberId = 7734;
 ChangeMemberTransaction cmt(empId, memberId, 9.42);
 cmt.Execute();
 Date payDate(11,9,2001);
 ServiceChargeTransaction sct(memberId, payDate, 19.42);
 sct.Execute();
 TimeCardTransaction tct(payDate, 8.0, empId);
 tct.Execute();
 PaydayTransaction pt(payDate);
 pt.Execute();
 Paycheck* pc = pt.GetPaycheck(empId);
 assert(pc);
 assert(pc->GetPayPeriodEndDate() == payDate);
 assertEquals(8*15.24, pc->GetGrossPay(), .001);
 assert("Hold" == pc->GetField("Disposition"));
 assertEquals(9.42 + 19.42, pc->GetDeductions(), .001);
 assertEquals((8*15.24)-(9.42 + 19.42), pc->GetNetPay(), .001);
}

The second test case posed something of a problem for me. You can see it in Listing 19-52. This test case
makes sure that service charges dated outside the current pay period are not deducted.

Listing 19-52

PayrollTest::TestServiceChargesSpanningMultiplePayPeriods

void PayrollTest::
TestServiceChargesSpanningMultiplePayPeriods()
{
 cerr << "TestServiceChargesSpanningMultiplePayPeriods" << endl;
 int empId = 1;
 AddHourlyEmployee t(empId, "Bill", "Home", 15.24);
 t.Execute();
 int memberId = 7734;
 ChangeMemberTransaction cmt(empId, memberId, 9.42);
 cmt.Execute();
 Date earlyDate(11,2,2001); // previous Friday
 Date payDate(11,9,2001);
 Date lateDate(11,16,2001); // next Friday
 ServiceChargeTransaction sct(memberId, payDate, 19.42);
 sct.Execute();
 ServiceChargeTransaction sctEarly(memberId, earlyDate, 100.00);
 sctEarly.Execute();
 ServiceChargeTransaction sctLate(memberId, lateDate, 200.00);
 sctLate.Execute();
 TimeCardTransaction tct(payDate, 8.0, empId);
 tct.Execute();
 PaydayTransaction pt(payDate);
 pt.Execute();
 Paycheck* pc = pt.GetPaycheck(empId);
 assert(pc);
 assert(pc->GetPayPeriodEndDate() == payDate);

244
www.EBooksWorld.ir

Paying Employees

 assertEquals(8*15.24, pc->GetGrossPay(), .001);
 assert("Hold" == pc->GetField("Disposition"));
 assertEquals(9.42 + 19.42, pc->GetDeductions(), .001);
 assertEquals((8*15.24)-(9.42 + 19.42), pc->GetNetPay(), .001);
}

To implement this, I wanted UnionAffiliation::CalculateDeductions to call IsInPayPeriod.
Unfortunately, we just put IsInPayPeriod in the PaymentClassification class. (See Listing 19-49.) It was
convenient to put it there while it was the derivatives of PaymentClassification that needed to call it. But now
other classes need it as well. So I moved the function into the Date class. After all, the function is simply deter-
mining if a given date is between two other given dates. (See Listing 19-53.)

Listing 19-53

Date::IsBetween

static bool IsBetween(const Date& theDate,
 const Date& startDate,
 const Date& endDate)
{
 return (theDate >= startDate) && (theDate <= endDate);
}

Now, we can finally finish the UnionAffiliation::CalculateDeductions function. I leave that as an
exercise for you.

Listings 19-54 and 19-55 show the implementation of the Employee class.

Listing 19-54

Employee.h

#ifndef EMPLOYEE_H
#define EMPLOYEE_H

#include <string>

class PaymentSchedule;
class PaymentClassification;
class PaymentMethod;
class Affiliation;
class Paycheck;
class Date;

class Employee
{
 public:
 virtual ~Employee();
 Employee(int empid, string name, string address);
 void SetName(string name);
 void SetAddress(string address);
 void SetClassification(PaymentClassification*);
 void SetMethod(PaymentMethod*);
 void SetSchedule(PaymentSchedule*);
 void SetAffiliation(Affiliation*);

245
www.EBooksWorld.ir

246 Chapter 19 • The Payroll Case Study: Implementation

 int GetEmpid() const {return itsEmpid;}
 string GetName() const {return itsName;}
 string GetAddress() const {return itsAddress;}
 PaymentMethod* GetMethod() {return itsPaymentMethod;}
 PaymentClassification* GetClassification() {return itsClassification;}
 PaymentSchedule* GetSchedule() {return itsSchedule;}
 Affiliation* GetAffiliation() {return itsAffiliation;}

 void Payday(Paycheck&);
 bool IsPayDate(const Date& payDate) const;
 Date GetPayPeriodStartDate(const Date& payPeriodEndDate) const;

 private:
 int itsEmpid;
 string itsName;
 string itsAddress;
 PaymentClassification* itsClassification;
 PaymentSchedule* itsSchedule;
 PaymentMethod* itsPaymentMethod;
 Affiliation* itsAffiliation;
};

#endif

Listing 19-55

Employee.cpp

#include "Employee.h"
#include "NoAffiliation.h"
#include "PaymentClassification.h"
#include "PaymentSchedule.h"
#include "PaymentMethod.h"
#include "Paycheck.h"

Employee::~Employee()
{
 delete itsClassification;
 delete itsSchedule;
 delete itsPaymentMethod;
}

Employee::Employee(int empid, string name, string address)
: itsEmpid(empid)
, itsName(name)
, itsAddress(address)
, itsAffiliation(new NoAffiliation())
, itsClassification(0)
, itsSchedule(0)
, itsPaymentMethod(0)
{
}

246
www.EBooksWorld.ir

Paying Employees

void Employee::SetName(string name)
{
 itsName = name;
}

void Employee::SetAddress(string address)
{
 itsAddress = address;
}

void Employee::SetClassification(PaymentClassification* pc)
{
 delete itsClassification;
 itsClassification = pc;
}

void Employee::SetSchedule(PaymentSchedule* ps)
{
 delete itsSchedule;
 itsSchedule = ps;
}

void Employee::SetMethod(PaymentMethod* pm)
{
 delete itsPaymentMethod;
 itsPaymentMethod = pm;
}

void Employee::SetAffiliation(Affiliation* af)
{
 delete itsAffiliation;
 itsAffiliation = af;
}

bool Employee::IsPayDate(const Date& payDate) const
{
 return itsSchedule->IsPayDate(payDate);
}

Date Employee::GetPayPeriodStartDate(const Date& payPeriodEndDate) const
{
 return itsSchedule->GetPayPeriodStartDate(payPeriodEndDate);
}

void Employee::Payday(Paycheck& pc)
{
 Date payDate = pc.GetPayPeriodEndDate();
 double grossPay = itsClassification->CalculatePay(pc);
 double deductions = itsAffiliation->CalculateDeductions(pc);
 double netPay = grossPay - deductions;
 pc.SetGrossPay(grossPay);
 pc.SetDeductions(deductions);
 pc.SetNetPay(netPay);
 itsPaymentMethod->Pay(pc);
}

247
www.EBooksWorld.ir

248 Chapter 19 • The Payroll Case Study: Implementation

Main Program
The main payroll program can now be expressed as a loop that parses transactions from an input source and then
executes them. Figures 19-34 and 19-35 describe the statics and dynamics of the main program. The concept is
simple: the PayrollApplication sits in a loop, alternately requesting transactions from the Transaction-
Source and then telling those Transaction objects to Execute. Note that this is different from the diagram in
Figure 19-1, and it represents a shift in our thinking to a more abstract mechanism.

Figure 19-34 Static Model for the Main Program

«interface»
Transaction

Source

«interface»
Transaction

+ GetTransaction

TextParser
Transaction

Source

Payroll
Application

Figure 19-35 Dynamic Model for the Main Program

Payroll
Application

t := GetTransaction()

Transaction
Source

t:Transaction

Execute()

TransactionSource is an abstract class that we can implement in several ways. The static diagram shows
the derivative named TextParserTransactionSource, which reads an incoming text stream and parses out the
transactions as described in the use cases. This object then creates the appropriate Transaction objects and
sends them along to the PayrollApplication.

The separation of interface from implementation in the TransactionSource allows the source of
the transactions to be abstract; for example, we could easily interface the PayrollApplication to a
GUITransactionSource or a RemoteTransactionSource.

The Database
Now that this iteration has been analyzed, designed, and (mostly) implemented, we can consider the role of the
database. The class PayrollDatabase clearly encapsulates something involving persistence. The objects con-
tained within the PayrollDatabase must live longer than any particular run of the application. How should this
be implemented? Clearly the transient mechanism used by the test cases is not sufficient for the real system. We
have several options.

We could implement PayrollDatabase using an object-oriented database management system
(OODBMS). This would allow the actual objects to reside within the permanent storage of the database. As
designers, we would have little more work to do, since the OODBMS would not add much new to our design. One
of the great benefits of OODBMS products is that they have little or no impact on the object model of the applica-
tions. As far as the design is concerned, the database barely exists.6

Another option would be to use a simple, flat text file to record the data. Upon initialization, the
PayrollDatabase object could read that file and build the necessary objects in memory. At the end of the pro-
gram, the PayrollDatabase object could write a new version of the text file. Certainly this option would not suf-
fice for a company with hundreds of thousands of employees, or for one that wanted real-time concurrent access to

6. This is optimistic. In a simple application like Payroll, the use of an OODBMS would have very little impact upon the design of the
program. As applications become more and more complicated, the amount of impact that the OODBMS has upon the application
increases. Still, the impact is far less than the impact an RDBMS would have.

248
www.EBooksWorld.ir

Summary of Payroll Design

its payroll database. However, it might suffice for a smaller company, and it could certainly be used as a mecha-
nism for testing the rest of the application classes without investing in a big database system.

Still another option would be to incorporate a relational database management system (RDBMS) into the
PayrollDatabase object. The implementation of the PayrollDatabase object would then make the appropri-
ate queries to the RDMBS to temporarily create the necessary objects in memory.

The point is that, as far as the application is concerned, databases are simply mechanisms for managing stor-
age. They should usually not be considered as a major factor of the design and implementation. As we have shown
here, they can be left for last and handled as a detail.7 By doing so, we leave open a number of interesting options
for implementing the needed persistence and for creating mechanisms to test the rest of the application. We also do
not tie ourselves to any particular database technology or product. We have the freedom to choose the database we
need, based upon the rest of the design, and we maintain the freedom to change or replace that database product in
the future as needed.

Summary of Payroll Design
In roughly 50 diagrams, and 3300 lines of code, we have shown the design and implementation of one iteration of
the payroll application. The design employs a large amount of abstraction and polymorphism. The result is that
large portions of the design are closed against changes of payroll policy. For example, the application could be
changed to deal with employees who were paid quarterly based upon a normal salary and a bonus schedule. This
change would require addition to the design, but little of the existing design and code would change.

During this process, we rarely considered whether we were performing analysis, design, or implementation.
Instead, we concentrated upon issues of clarity and closure. We tried to find the underlying abstractions wherever
possible. The result is that we have a good starting design for a payroll application, and we have a core of classes
that are germane to the problem domain as a whole.

History

The diagrams in this chapter are derived from the Booch diagrams in the corresponding chapter of my 1995 book
Designing Object-Oriented C++ Applications using the Booch Method. Those diagrams were created in 1994. As
I created them, I also wrote some of the code that implemented them, to make sure that the diagrams made sense.
However, I did not write anywhere near the amount of code presented here. Therefore, the diagrams did not benefit
from significant feedback from the code and tests. This lack of feedback shows.

I wrote the current chapter in the order presented here. In every case, test cases were written before produc-
tion code. In many cases, those tests were created incrementally, evolving as the production code also evolved. The
production code was written to comply with the diagrams so long as that made sense. There were several cases
where it did not make sense, and so I changed the design of the code.

One of the first places that this happened was back on page 219 when I decided against multiple
Affiliation instances in the Employee object. Another was on page 229 when I found that I had not considered
recording the employee’s membership in the union in the ChangeMemberTransaction.

This is normal. When you design without feedback, you will necessarily make errors. It was the feedback
imposed by the tests cases and running code that found these errors for us.

7. Sometimes the nature of the database is one of the requirements of the application. RDBMSs provide powerful query and reporting sys-
tems that may be listed as application requirements. However, even when such requirements are explicit, the designers should still
decouple the application design from the database design. The application design should not have to depend on any particular kind of
database.

249
www.EBooksWorld.ir

250 Chapter 19 • The Payroll Case Study: Implementation

Resources

You can find the final version of this code on the Prentice Hall Web site, or on www.objectmentor.com/PPP.

Bibliography

1. Jacobson, Ivar. Object-Oriented Software Engineering, A Use-Case-Driven Approach. Wokingham, UK: Addison–Wesley, 1992.

250
www.EBooksWorld.ir

SECTION 4

Packaging the Payroll System

In this section, we will explore the principles of design that help us split a large software system into packages.
The first chapter in this section discusses those principles, the second describes a pattern that we’ll use to help
improve the packaging structure, and the third shows how the principles and pattern can be applied to the payroll
system.

From Section 4 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

251
www.EBooksWorld.ir

252
www.EBooksWorld.ir

20

Principles of Package Design

Nice Package.

—Anthony

As software applications grow in size and complexity, they require some kind of high-level organization. Classes,
while a very convenient unit for organizing small applications, are too finely grained to be used as the sole organi-
zational unit for large applications. Something “larger” than a class is needed to help organize large applications.
That something is called a package.

This chapter outlines six principles. The first three are principles of package cohesion. They help us allocate
classes to packages. The last three principles govern package coupling. They help us determine how packages
should be interrelated. The last two principles also describe a set of Dependency Management (DM) metrics that
allows developers to measure and characterize the dependency structure of their designs.

Designing with Packages?
In UML, packages can be used as containers for groups of classes. By grouping classes into packages, we can rea-
son about the design at a higher level of abstraction. We can also use the packages to manage the development and
distribution of the software. The goal is to partition the classes in an application according to some criteria, and
then allocate the classes in those partitions to packages.

From Chapter 20 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

253
www.EBooksWorld.ir

Chapter 20 • Principles of Package Design

But classes often have dependencies on other classes, and these dependencies will very often cross package
boundaries. Thus, the packages will have dependency relationships with each other. The relationships between
packages express the high-level organization of the application, and they need to be managed.

This begs a large number of questions.

1. What are the principles for allocating classes to packages?
2. What design principles govern the relationships between packages?
3. Should packages be designed before classes (top down)? Or should classes be designed before packages

(bottom up)?
4. How are packages physically represented? In C++? In Java? In the development environment?
5. Once created, to what purpose will we put these packages?

This chapter presents six design principles that govern the creation, interrelationship, and use of packages.
The first three govern the partitioning of classes into packages. The last three govern the interrelationships between
packages.

Granularity: The Principles of Package Cohesion
The three principles of package cohesion help developers decide how to partition classes into packages. They
depend on the fact that at least some of the classes and their interrelationships have been discovered. Thus, these
principles take a “bottom-up” view of partitioning.

The Reuse–Release Equivalence Principle (REP)

The granule of reuse is the granule of release.

What do you expect from the author of a class library that you are planning to reuse? Certainly you want good doc-
umentation, working code, well-specified interfaces, etc. But there are other things you want, too.

First of all, to make it worth your while to reuse this person’s code, you want the author to guarantee to
maintain it for you. After all, if you have to maintain it, you are going to have to invest a tremendous amount of
time into it—time that might be better spent designing a smaller and better package for yourself.

Second, you are going to want the author to notify you in advance of any changes he plans to make to the
interface and functionality of the code. But notification is not enough. The author must give you the option to
refuse to use any new versions. After all, he might introduce a new version while you are in a severe schedule
crunch, or he might make changes to the code that are simply incompatible with your system.

In either case, should you decide to reject his version, the author must guarantee to support your use of the
old version for a time. Perhaps that time is as short as three months or as long as a year; that is something for the
two of you to negotiate. But he can’t just cut you loose and refuse to support you. If he won’t agree to support your
use of his older versions, then you may have to seriously consider whether you want to use his code and be subject
to his capricious changes.

This issue is primarily political. It has to do with the clerical and support effort that must be provided if other
people are going to reuse code. But those political and clerical issues have a profound effect on the packaging
structure of software. In order to provide the guarantees that reusers need, authors must organize their software
into reusable packages and then track those packages with release numbers.

The REP states that the granule of reuse (i.e., a package) can be no smaller than the granule of release. Any-
thing that we reuse must also be released and tracked. It is not realistic for a developer to simply write a class and
then claim it is reusable. Reusability comes only after there is a tracking system in place that offers the guarantees
of notification, safety, and support that the potential reusers will need.

254
www.EBooksWorld.ir

Granularity: The Principles of Package Cohesion

The REP gives us our first hint at how to partition our design into packages. Since reusability must be based
on packages, reusable packages must contain reusable classes. So, at least some packages should comprise reus-
able sets of classes.

It may seem disquieting that a political force would affect the partitioning of our software, but software is
not a mathematically pure entity that can be structured according to mathematically pure rules. Software is a
human product that supports human endeavors. Software is created and used by humans. And if software is going
to be reused, then it must be partitioned in a manner that humans find convenient for that purpose.

So what does this tell us about the internal structure of a package? One must consider the internal contents
from the point of view of potential reusers. If a package contains software that should be reused, then it should not
also contain software that is not designed for reuse. Either all of the classes in a package are reusable or none of
them are.

Reusability is not the only criterion; we must also consider who the reuser is. Certainly, a container-class
library is reusable, and so is a financial framework. But we would not want them to be part of the same pack-
age. There are many people who would like to reuse a container-class library who have no interest in a financial
framework. Thus, we want all of the classes in a package to be reusable by the same audience. We do not want
an audience to find that a package consists of some classes he needs and others that are wholly inappropriate
for him.

The Common-Reuse Principle (CRP)

The classes in a package are reused together. If you reuse one of the classes in a package, you reuse
them all.

This principle helps us to decide which classes should be placed into a package. It states that classes that tend to be
reused together belong in the same package.

Classes are seldom reused in isolation. Generally, reusable classes collaborate with other classes that are part
of the reusable abstraction. The CRP states that these classes belong together in the same package. In such a pack-
age, we would expect to see classes that have lots of dependencies on each other.

A simple example might be a container class and its associated iterators. These classes are reused together
because they are tightly coupled to each other. Thus, they ought to be in the same package.

But the CRP tells us more than just what classes to put together into a package. It also tells us what classes
not to put in the package. When one package uses another, a dependency is created between the packages. It may
be that the using package only uses one class within the used package. However, that doesn’t weaken the depen-
dency at all. The using package still depends on the used package. Every time the used package is released, the
using package must be revalidated and rereleased. This is true even if the used package is being released because
of changes to a class that the using package doesn’t care about.

Moreover, it is common for packages to have physical representations as shared libraries, DLLs, JARs. If the
used package is released as a JAR, then the using code depends on the entire JAR. Any modification to that JAR—
even if the modification is to a class that the using code does not care about—will still cause a new version of the
JAR to be released. The new JAR will still have to be redistributed, and the using code will still have to be
revalidated.

Thus, I want to make sure that when I depend on a package, I depend on every class in that package. To say
this another way, I want to make sure that the classes that I put into a package are inseparable, that it is impossible
to depend on some and not the others. Otherwise, I will be revalidating and redistributing more than is necessary,
and I will waste significant effort.

Therefore, the CRP tells us more about what classes shouldn’t be together than what classes should be
together. The CRP says that classes which are not tightly bound to each other with class relationships should not
be in the same package.

255
www.EBooksWorld.ir

Chapter 20 • Principles of Package Design

The Common-Closure Principle (CCP)

The classes in a package should be closed together against the same kinds of changes. A change that
affects a package affects all the classes in that package and no other packages.

This is the Single-Responsibility Principle restated for packages. Just as the SRP says that a class should not con-
tain multiples reasons to change, this principle says that a package should not have multiple reasons to change.

In most applications, maintainability is more important that reusability. If the code in an application must
change, you would rather that the changes occur all in one package, rather than being distributed through many
packages. If changes are focused into a single package, then we need only release the one changed package. Other
packages that don’t depend on the changed package do not need to be revalidated or rereleased.

The CCP prompts us to gather together in one place all the classes that are likely to change for the same rea-
sons. If two classes are so tightly bound, either physically or conceptually, that they always change together, then
they belong in the same package. This minimizes the workload related to releasing, revalidating, and redistributing
the software.

This principle is closely associated with the Open–Closed Principle (OCP). For it is “closure” in the OCP
sense of the word that this principle is dealing with. The OCP states that classes should be closed for modification
but open for extension. But as we learned, 100% closure is not attainable. Closure must be strategic. We design our
systems such that they are closed to the most common kinds of changes that we have experienced.

The CCP amplifies this by grouping together classes that are open to certain types of changes into the same
packages. Thus, when a change in requirements comes along, that change has a good chance of being restricted to
a minimal number of packages.

Summary of Package Cohesion

In the past, our view of cohesion was much simpler than the last three principles have implied. We used to think
that cohesion was simply the attribute of a module to perform one, and only one, function. However, the three prin-
ciples of package cohesion describe a richer variety of cohesion. In choosing the classes to group together into
packages, we must consider the opposing forces involved in reusability and developability. Balancing these forces
with the needs of the application is nontrivial. Moreover, the balance is almost always dynamic. That is, the parti-
tioning that is appropriate today might not be appropriate next year. Thus, the composition of the packages will
likely jitter and evolve with time as the focus of the project changes from developability to reusability.

Stability: The Principles of Package Coupling
The next three principles deal with the relationships between
packages. Here again, we will run into the tension between
developability and logical design. The forces that impinge on the
architecture of a package structure are technical, political, and
volatile.

The Acyclic-Dependencies Principle (ADP)

Allow no cycles in the package-dependency graph.

Have you ever worked all day, gotten some stuff working and then gone home, only to arrive the next morning at to
find that your stuff no longer works? Why doesn’t it work? Because somebody stayed later than you and changed
something you depend on! I call this the “morning-after syndrome.”

256
www.EBooksWorld.ir

Stability: The Principles of Package Coupling

The morning-after syndrome occurs in development environments where many developers are modifying
the same source files. In relatively small projects with just a few developers, it isn’t too big a problem. But as the
size of the project and the development team grows, the mornings after can get pretty nightmarish. It is not uncom-
mon, in undisciplined teams, for weeks to go by without being able to build a stable version of the project. Instead,
everyone keeps on changing and changing their code trying to make it work with the last changes that someone
else made.

Over the last several decades, two solutions to this problem have evolved. Both solutions have come from
the telecommunications industry. The first is “the weekly build,” and the second is the ADP.

The Weekly Build

The weekly build is common in medium-sized projects. It works like this: All the developers ignore each other for
the first four days of the week. They all work on private copies of the code and don’t worry about integrating with
each other. Then, on Friday, they integrate all their changes and build the system.

This has the wonderful advantage of allowing the developers to live in an isolated world for four days out of
five. The disadvantage, of course, is the large integration penalty that is paid on Friday.

Unfortunately, as the project grows, it becomes less feasible to finish integrating on Friday. The integration
burden grows until it starts to overflow into Saturday. A few such Saturdays are enough to convince the developers
that integration should really begin on Thursday. And so the start of integration slowly creeps toward the middle of
the week.

As the duty cycle of development vs. integration decreases, the efficiency of the team decreases, too. Eventu-
ally this becomes so frustrating that the developers, or the project managers, declare that the schedule should be
changed to a biweekly build. This suffices for a time, but the integration time continues to grow with project size.

This eventually leads to a crisis. To maintain efficiency, the build schedule has to be continually lengthened.
Yet lengthening the build schedule increases project risks. Integration and testing become harder and harder to do,
and the team loses the benefit of rapid feedback.

Eliminating Dependency Cycles

The solution to this problem is to partition the development environment into releasable packages. The packages
become units of work, which can be checked out by a developer or a team of developers. When developers get a
package working, they release it for use by the other developers. They give it a release number and move it into a
directory for other teams to use. They then continue to modify their package in their own private areas. Everyone
else uses the released version.

As new releases of a package are made, other teams can decide whether or not to immediately adopt the new
release. If they decide not to, they simply continue using the old release. Once they decide that they are ready, they
begin to use the new release.

Thus, none of the teams is at the mercy of the others. Changes made to one package do not need to have an
immediate effect on other teams. Each team can decide for itself when to adapt its packages to new releases of the
packages they use. Moreover, integration happens in small increments. There is no single point in time when all
developers must come together and integrate everything they are doing.

This is a very simple and rational process, and it is widely used. However, to make it work you must manage
the dependency structure of the packages. There can be no cycles. If there are cycles in the dependency structure,
then the morning-after syndrome cannot be avoided.

Consider the package diagram in Figure 20-1. Here we see a rather typical structure of packages assembled
into an application. The function of this application is unimportant for the purpose of this example. What is impor-
tant is the dependency structure of the packages. Notice that this structure is a directed graph. The packages are
the nodes, and the dependency relationships are the directed edges.

257
www.EBooksWorld.ir

Chapter 20 • Principles of Package Design

Now notice one more thing. Regardless of the package at which you begin, it is impossible to follow the
dependency relationships and wind up back at that package. This structures has no cycles. It is a directed acyclic
graph. (DAG).

When the team responsible for MyDialogs makes a new release of their package it is easy to find out who is
affected; you just follow the dependency arrows backwards. Thus, MyTasks and MyApplication are both going
to be affected. The developers currently working on those packages will have to decide when they should integrate
with the new release of MyDialogs.

Notice also that when MyDialogs is released, it has utterly no effect on many of the other packages in the
system. They don’t know about MyDialogs, and they don’t care when it changes. This is nice. It means that the
impact of releasing MyDialogs is relatively small.

When the developers working on the MyDialogs package would like to run a test of that package, all they
need do is compile and link their version of MyDialogs with the version of the Windows package that they are
currently using. None of the other packages in the system needs to be involved. This is nice; it means that the
developers working on MyDialogs have relatively little work to do to set up a test, and that there are relatively few
variables for them to consider.

When it is time to release the whole system, it is done from the bottom up. First the Windows package is
compiled, tested, and released. Next are MessageWindow and MyDialogs. These are followed by Task and then
TaskWindow and Database. MyTasks is next, and finally MyApplication. This process is very clear and easy
to deal with. We know how to build the system because we understand the dependencies between its parts.

The Effect of a Cycle in the Package Dependency Graph

Let us say that the a new requirement forces us to change one of the classes in MyDialogs such that it makes use
of a class in MyApplication. This creates a dependency cycle as shown in Figure 20-2.

This cycle creates some immediate problems. For example, the developers working on the MyTasks package
know that in order to release, they must be compatible with Task, MyDialogs, Database, and Windows. How-
ever, with the cycle in place, they must now also be compatible with MyApplication, TaskWindow, and
MessageWindow. That is, MyTasks now depends on every other package in the system. This makes MyTasks very
difficult to release. MyDialogs suffers the same fate. In fact, the cycle forces MyApplication, MyTasks, and
MyDialogs to always be released at the same time. They have, in effect, become one large package. And all the
developers who are working in any of those packages will experience the morning-after syndrome once again.

Figure 20-1 Package Structures are a Directed Acyclic Graph

Message
Window

Task
Window

MyTasks

Database

Tasks

Windows

MyApplication

MyDialogs

258
www.EBooksWorld.ir

Stability: The Principles of Package Coupling

They will be stepping all over one another since they must all be using exactly the same release of each other’s
packages.

But this is just part of the trouble. Consider what happens when we want to test the Mydialogs package. We
find that we must link in every other package in the system, including the Database package. This means that we
have to do a complete build just to test MyDialogs. This is intolerable.

If you have ever wondered why you have to link in so many different libraries, and so much of everybody
else’s stuff, just to run a simple unit test of one of your classes, it is probably because there are cycles in the depen-
dency graph. Such cycles make it very difficult to isolate modules. Unit testing and releasing become very difficult
and error prone. And, in C++, compile times grow geometrically with the number of modules.

Moreover, when there are cycles in the dependency graph, it can be very difficult to work out the order in
which to build the packages. Indeed, there may be no correct order. This can lead to some very nasty problems in
languages like Java that read their declarations from compiled binary files.

Breaking the Cycle

It is always possible to break a cycle of packages and reinstate the dependency graph as a DAG. There are two pri-
mary mechanisms.

1. Apply the Dependency-Inversion Principle (DIP). In the case of Figure 20-3, we could create an abstract
base class that has the interface that MyDialogs needs. We could then put that abstract base into
MyDialogs and inherit it into MyApplication. This inverts the dependency between MyDialogs and
MyApplication, thus breaking the cycle. (See Figure 20-3.)

Notice, once again, that we named the interface after the client rather than the server. This is yet
another application of the rule that interfaces belong to clients.

2. Create a new package on which both MyDialogs and MyApplication depend. Move the class(es) that they
both depend on into that new package. (See Figure 20-4.)

The “Jitters”

The second solution implies that the package structure is volatile in the presence of changing requirements.
Indeed, as the application grows, the package dependency structure jitters and grows. Thus, the dependency struc-
ture must always be monitored for cycles. When cycles occur, they must be broken somehow. Sometimes this will
mean creating new packages, making the dependency structure grow.

Figure 20-2 A Package Diagram with a Cycle

Message
Window

Task
Window

MyTasks

Database

Tasks

Windows

MyApplication

MyDialogs

259
www.EBooksWorld.ir

Chapter 20 • Principles of Package Design

Top-Down Design
The issues we have discussed so far lead to an inescapable conclusion. The package structure cannot be designed
from the top down. This means that it is not one of the first things about the system that is designed. Indeed, it
seems that it evolves as the system grows and changes.

You may find this to be counterintuitive. We have come to expect that large-grained decompositions, like
packages, are also high-level functional decompositions. When we see a large-grained grouping like a package
dependency structure, we feel that the packages ought to somehow represent the functions of the system. Yet this
does not seem to be an attribute of package dependency diagrams.

In fact, package dependency diagrams have very little do to with describing the function of the application.
Instead, they are a map to the buildability of the application. This is why they aren’t designed at the start of the
project. There is no software to build, and so there is no need for a build map. But as more and more classes accu-
mulate in the early stages of implementation and design, there is a growing need to manage the dependencies so
that the project can be developed without the morning-after syndrome. Moreover, we want to keep changes as
localized as possible, so we start paying attention to the SRP and CCP and collocate classes that are likely to
change together.

As the application continues to grow, we start becoming concerned about creating reusable elements. Thus,
the CRP begins to dictate the composition of the packages. Finally, as cycles appear, the ADP is applied and the
package dependency graph jitters and grows.

Figure 20-3 Breaking the cycle with dependency inversion

Figure 20-4 Breaking the cycle with a new package

X

«interface»
X ServerX

MyDialogs

Y

MyApplication

Y

MyApplicationMyDialogs

Message
Window

Task
Window

MyTasks

Database

Tasks

Windows

MyApplication

MyDialogs

aNewPackage

260
www.EBooksWorld.ir

The Stable-Dependencies Principle (SDP)

If we were to try to design the package dependency structure before we had designed any classes, we would
likely fail rather badly. We would not know much about common closure, we would be unaware of any reusable
elements, and we would almost certainly create packages that produce dependency cycles. Thus, the package
dependency structure grows and evolves with the logical design of the system.

The Stable-Dependencies Principle (SDP)

Depend in the direction of stability.

Designs cannot be completely static. Some volatility is necessary if the design is to be maintained. We accomplish
this by conforming to the Common-Closure Principle (CCP). Using this principle, we create packages that are sen-
sitive to certain kinds of changes. These packages are designed to be volatile. We expect them to change.

Any package that we expect to be volatile should not be depended on by a package that is difficult to change!
Otherwise the volatile package will also be difficult to change.

It is the perversity of software that a module that you have designed to be easy to change can be made hard
to change by someone else simply hanging a dependency on it. Not a line of source code in your module need
change, and yet your module will suddenly be hard to change. By conforming to the SDP, we ensure that modules
that are intended to be easy to change are not depended on by modules that are harder to change than they are.

Stability

Stand a penny on its side. Is it stable in that position? You’d likely say that it was not. However, unless disturbed, it
will remain in that position for a very long time. Thus, stability has nothing directly to do with frequency of
change. The penny is not changing, but it is hard to think of it as stable.

Webster says that something is stable if it is “not easily moved.”1 Stability is related to the amount of work
required to make a change. The penny is not stable because it requires very little work to topple it. On the other
hand, a table is very stable because it takes a considerable amount of effort to turn it over.

How does this relate to software? There are many factors that make a software package hard to change: its
size, complexity, clarity, etc. We are going to ignore all those factors and focus on something different. One sure
way to make a software package difficult to change is to make lots of other software packages depend on it. A
package with lots of incoming dependencies is very stable because it requires a great deal of work to reconcile any
changes with all the dependent packages.

Figure 20-5 shows X, a stable package. This package has three packages depending on it; and therefore, it
has three good reasons not to change. We say that it is responsible to those three packages. On the other hand, X
depends on nothing, so it has no external influence to make it change. We say it is independent.

1. Webster’s Third New International Dictionary.

Figure 20-5 X: A Stable Package

X

261
www.EBooksWorld.ir

Chapter 20 • Principles of Package Design

Figure 20-6, on the other hand, shows a very instable package. Y has no other packages depending on it; we
say that it is irresponsible. Y also has three packages that it depends on, so changes may come from three external
sources. We say that Y is dependent.

Stability Metrics

How can we measure the stability of a package? One way is to count the number of dependencies that enter and
leave that package. These counts will allow us to calculate the positional stability of the package.

• Afferent Couplings: The number of classes outside this package that depend on classes within this
package.

• Efferent Couplings: The number of classes inside this package that depend on classes outside this
package.

• (Instability I)

This metric has the range [0,1]. I = 0 indicates a maximally stable package. I = 1 indicates a maximally insta-
ble package.

The and metrics are calculated by counting the number of classes outside the package in question
that have dependencies on the classes inside the package in question. Consider the example in Figure 20-7.

The dashed arrows between the package represent package dependencies. The relationships between the
classes of those packages show how those dependencies are actually implemented. There are inheritance and asso-
ciation relationships.

Figure 20-6 Y: An Instable Package

Figure 20-7 Tabulating Ca, Ce, and I.

Y

Ca()

Ce()

I
Ce

Ca Ce+
-------------------=

Ca Ce

q

Pa

r

t

Pc

v

Pd

u

s

Pb

262
www.EBooksWorld.ir

The Stable-Dependencies Principle (SDP)

Now, let’s say we want to calculate the stability of the package Pc. We find that there are three classes out-
side Pc that depend on classes in Pc. Thus Ca = 3. Moreover, there is one class outside Pc that classes in Pc
depend on. Thus, Ce = 1, and I = 1/4.

In C++, these dependencies are typically represented by #include statements. Indeed, the I metric is easi-
est to calculate when you have organized your source code such that there is one class in each source file. In Java,
the I metric can be calculated by counting import statements and qualified names.

When the I metric is 1, it means that no other package depends on this package (Ca = 0); and this package
does depend on other packages (Ce > 0). This is as instable as a package can get; it is irresponsible and dependent.
Its lack of dependents gives it no reason not to change, and the packages that it depends on may give it ample rea-
son to change.

On the other hand, when the I metric is zero it means that the package is depended on by other packages
(Ca > 0), but does not itself depend on any other packages (Ce = 0). It is responsible and independent. Such a pack-
age is as stable as it can get. Its dependents make it hard to change, and it has no dependencies that might force it
to change.

The SDP says that the I metric of a package should be larger than the I metrics of the packages that it
depends on (i.e., I metrics should decrease in the direction of dependency).

Not All Packages Should Be Stable

If all the packages in a system were maximally stable, the system would be unchangeable. This is not a desirable
situation. Indeed, we want to design our package structure so that some packages are instable and some are stable.
Figure 20-8 shows an ideal configuration for a system with three packages.

The changeable packages are on top and depend on the stable package at the bottom. Putting the instable
packages at the top of the diagram is a useful convention since any arrow that points up is violating the SDP.

Figure 20-9 shows how the SDP can be violated. Flexible is a package that we intend to be easy to change.
We want Flexible to be instable. However, some developer, working in the package named Stable, hung a
dependency on Flexible. This violates the SDP since the I metric for Stable is much lower than the I metric for
Flexible. As a result, Flexible will no longer be easy to change. A change to Flexible will force us to deal
with Stable and all its dependents.

To fix this, we somehow have to break the dependence of Stable on Flexible. Why does this dependency
exist? Let’s assume that there is a class C within Flexible, that another class U within Stable needs to use. (See
Figure 20-10.)

We can fix this by employing the DIP. We create an interface class called IU and put it in a package named
UInterface. We make sure that this interface declares all the methods that U needs to use. We then make C inherit
from this interface. (See Figure 20-11.) This breaks the dependency of Stable on Flexible and forces both
packages to be dependent on UInterface. UInterface is very stable (I = 0), and Flexible retains its neces-
sary instability (I = 1). All the dependencies now flow in the direction of decreasing I.

Figure 20-8 Ideal package configuration

Stable

InstableInstableI = 1 I = 1

I = 0

263
www.EBooksWorld.ir

Chapter 20 • Principles of Package Design

Figure 20-9 Violation of SDP

Stable

Flexible

Figure 20-10 The cause of the bad dependency

Stable

U

C

Flexible

Where Do We Put the High-level Design?

Some software in the system should not change very often. This software represents the high-level architecture and
design decisions. We don’t want these architectural decisions to be volatile. Thus, the software that encapsulates
the high-level design of the system should be placed into stable packages (I = 0). The instable packages (I = 1)
should only contain the software that is likely to change.

However, if the high-level design is placed into stable packages, then the source code that represents that
design will be difficult to change. This could make the design inflexible. How can a package that is maximally sta-
ble (I = 0) be flexible enough to withstand change? The answer is to be found in the OCP. This principle tells us
that it is possible and desirable to create classes that are flexible enough to be extended without requiring modifica-
tion. What kind of classes conforms to this principle? Abstract classes.

The Stable-Abstractions Principle (SAP)

A package should be as abstract as it is stable.

This principle sets up a relationship between stability and abstractness. It says that a stable package should also be
abstract so that its stability does not prevent it from being extended. On the other hand, it says that an instable
package should be concrete since its instability allows the concrete code within it to be easily changed.

Thus, if a package is to be stable, it should also consist of abstract classes so that it can be extended. Stable
packages that are extensible are flexible and do not overly constrain the design.

Figure 20-11 Fixing the stability violation using DIP

IU
«interface»

Stable

U

Flexible

C

Ulnterface

264
www.EBooksWorld.ir

The Stable-Abstractions Principle (SAP)

The SAP and the SDP combined amount to the DIP for packages. This is true because the SDP says that
dependencies should run in the direction of stability, and the SAP says that stability implies abstraction. Thus,
dependencies run in the direction of abstraction.

However, the DIP is a principle that deals with classes. And with classes there are no shades of grey. Either a
class is abstract or it is not. The combination of the SDP and SAP deals with packages and allows that a package
can be partially abstract and partially stable.

Measuring Abstraction

The A metric is a measure of the abstractness of a package. Its value is simply the ratio of abstract classes in a
package to the total number of classes in the package.

—The number of classes in the package.

—The number of abstract classes in the package. Remember, an abstract class is a class with at least one
pure interface, and it cannot be instantiated.

A—Abstractness.

The A metric ranges from 0 to 1. Zero implies that the package has no abstract classes at all. A value of 1
implies that the package contains nothing but abstract classes.

The Main Sequence

We are now in a position to define the relationship between stability (I) and abstractness (A). We can create a graph
with A on the vertical axis and I on the horizontal axis. If we plot the two “good” kinds of packages on this graph,
we will find the packages that are maximally stable and abstract at the upper left at (0,1). The packages that are
maximally instable and concrete are at the lower right at (1,0). (See Figure 20-12.)

Not all packages can fall into one of these two positions. Packages have degrees of abstraction and stability.
For example, it is very common for one abstract class to derive from another abstract class. The derivative is an
abstraction that has a dependency. Thus, though it is maximally abstract, it will not be maximally stable. Its depen-
dency will decrease its stability.

Since we cannot enforce that all packages sit at either (0,1) or (1,0), we must assume that there is a locus of
points on the A/I graph that defines reasonable positions for packages. We can infer what that locus is by finding
the areas where packages should not be (i.e., zones of exclusion). (See Figure 20-13.)

Figure 20-12 The A–I Graph

Nc

Na

A
Na

Nc
------=

A

I

(1,0)

(0,1)

265
www.EBooksWorld.ir

Chapter 20 • Principles of Package Design

Consider a package in the area of (0,0). This is a highly stable and concrete package. Such a package is not
desirable because it is rigid. It cannot be extended because it is not abstract. And it is very difficult to change
because of its stability. Thus, we do not normally expect to see well-designed packages sitting near (0,0). The area
around (0,0) is a zone of exclusion called the Zone of Pain.

It should be noted that there are cases when packages do indeed fall within the Zone of Pain. An example
would be a database schema. Database schemas are notoriously volatile, extremely concrete, and highly depended
on. This is one of the reasons that the interface between OO applications and databases is so difficult and that
schema updates are generally painful.

Another example of a package that sits on (0,0) is a package that holds a concrete utility library. Although
such a package has an I metric of 1, it may in fact be nonvolatile. Consider a “string” package for example. Even
though all the classes within it are concrete, it is nonvolatile. Such packages are harmless in the (0,0) zone since
they are not likely to be changed. Indeed, we can consider a third axis of the graph being that of volatility. If so, the
graph in Figure 20-13 shows the plane at volatility = 1.

Consider a package near (1,1). This location is undesirable because it is maximally abstract and yet has no
dependents. Such packages are useless. Thus, this is called the Zone of Uselessness.

It seems clear that we’d like our volatile packages to be as far from both zones of exclusion as possible. The
locus of points that is maximally distant from each zone is the line that connects (1,0) and (0,1). This line is known
as the main sequence.2

A package that sits on the main sequence is not “too abstract” for its stability, nor is it “too instable” for its
abstractness. It is neither useless, nor particularly painful. It is depended on to the extent that it is abstract, and it
depends on others to the extent that it is concrete.

Clearly, the most desirable positions for a package to hold are at one of the two endpoints of the main
sequence. However, in my experience less than half the packages in a project can have such ideal characteristics.
Those other packages have the best characteristics if they are on or close to the main sequence.

Distance from the Main Sequence

This leads us to our last metric. If it is desirable for packages to be on or close to the main sequence, we can create
a metric which measures how far away a package is from this ideal.

D—Distance.

.

This metric ranges from [0,~0.707].

Figure 20-13 Zones of Exclusion

2. The name “main sequence” was adopted because of my interest in astronomy and HR diagrams.

(1,1)
Zoneof

Uselessness

ZoneofPain

The M
ain Sequence

A

I (1,0)

(0,1)

(0,0)

D
A I 1–+

2
------------------------=

266
www.EBooksWorld.ir

The Stable-Abstractions Principle (SAP)

—Normalized Distance.

.

This metric is much more convenient than D since it ranges from [0,1]. Zero indicates that the package is
directly on the main sequence. One indicates that the package is as far away as possible from the main
sequence.

Given this metric, a design can be analyzed for its overall conformance to the main sequence. The D metric
for each package can be calculated. Any package that has a D value that is not near zero can be reexamined and
restructured. In fact, this kind of analysis has been a great aid to the author in helping to define packages that are
more maintainable and less sensitive to change.

Statistical analysis of a design is also possible. One can calculate the mean and variance of all the D metrics
for the packages within a design. One would expect a conformant design to have a mean and variance close to
zero. The variance can be used to establish “control limits,” which can identify packages that are “exceptional” in
comparison to all the others. (See Figure 20-14.)

In this scatter plot,3 we see that the bulk of the packages lies along the main sequence, but some of them are
more than one standard deviation (Z = 1) away from the mean. These aberrant packages are worth looking at. For
some reason, they are either very abstract with few dependents or very concrete with many dependents.

Another way to use the metrics is to plot the metric of each package over time. Figure 20-15 shows a
mock-up of such a plot. You can see that some strange dependencies have been creeping into the Payroll package
over the last few releases. The plot shows a control threshold at = 0.1. The R2.1 point has exceeded this control
limit, so it would be worth our while to find out why this package is so far from the main sequence.

Figure 20-14 Scatter plot of Package D scores

3. Not based on real data.

Figure 20-15 Time plot of a single package’s D ′ scores

D′

D′ A I 1–+=

A

I

1

1
Z = 2 Z = 1

Z = 2

Z = 1

m
ain sequence

D′

D′

0.2

0.1

R1.0 R2.1R2.0R1.2
Release

D'

Package: Payroll

R1.1

267
www.EBooksWorld.ir

Chapter 20 • Principles of Package Design

Conclusion
The dependency-management metrics described in this chapter measure the conformance of a design to a pattern
of dependency and abstraction that I think is a “good” pattern. Experience has shown that certain dependencies are
good and others are bad. This pattern reflects that experience. However, a metric is not a god; it is merely a mea-
surement against an arbitrary standard. It is certainly possible that the standard chosen in this chapter is appropri-
ate only for certain applications and is not appropriate for others. It may also be that there are far better metrics
that can be used to measure the quality of a design.

268
www.EBooksWorld.ir

21

FACTORY

The man who builds a factory builds a temple....

—Calvin Coolidge (1872–1933)

The Dependency-Inversion Principle (DIP)1 tells us that we should prefer dependencies on abstract classes and
avoid dependencies on concrete classes, especially when those classes are volatile. Therefore, the following snip-
pet of code violates this principle:

Circle c = new Circle(origin, 1);

Circle is a concrete class. Therefore, those modules that create instances of Circle must violate DIP.
Indeed, any line of code that uses the new keyword violates DIP.

There are times when violating the DIP is mostly harmless.2 The more likely a concrete class is to change,
the more likely depending on it will lead to trouble. But if the concrete class is not volatile, then depending on it is
not worrisome.

For example, creating instances of String does not bother me. Depending on String is very safe because
String is not likely to change any time soon.

1. “DIP: The Dependency-Inversion Principle” on page 127.

2. That’s pretty good coverage.

From Chapter 21 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

269
www.EBooksWorld.ir

Chapter 21 • Factory

On the other hand, when we are actively developing an application, there are many concrete classes that are
very volatile. Depending on them is problematic. We’d rather depend on an abstract interface to shield us from the
majority of the changes.

The FACTORY pattern allows us to create instances of concrete objects while depending only on abstract
interfaces. Therefore, it can be of great assistance during active development when those concrete classes are
highly volatile.

Figure 21-1 shows the problematic scenario. We have a class named SomeApp that depends on the interface
Shape. SomeApp uses instances of Shape solely through the Shape interface. It does not use any of the specific
methods of Square or Circle. Unfortunately, SomeApp also creates instances of Square and Circle and thus
has to depend on the concrete classes.

We can fix this by applying the FACTORY pattern to SomeApp as in Figure 21-2. Here we see the
ShapeFactory interface. This interface has two methods: makeSquare and makeCircle. The makeSquare
method returns an instance of a Square, and the makeCircle method returns an instance of a Circle. However,
the return type of both functions is Shape.

Listing 21-1 shows what the ShapeFactory code looks like, and Listing 21-2 shows ShapeFactory-
Implementation.

Figure 21-1 An app that violates the DIP to create concrete classes

Figure 21-2 Shape Factory

Square

Some App

Circle

«interface»
Shape

«creates»

Square

Some App

Circle
ShapeFactory

Implementation

«interface»
Shape

«interface»

+ makeSquare()
+ makeCircle()

ShapeFactory

«creates»

270
www.EBooksWorld.ir

A Dependency Cycle

Listing 21-1

ShapeFactory.java

public interface ShapeFactory
{
 public Shape makeCircle();
 public Shape makeSquare();
}

Listing 21-2

ShapeFactoryImplementation.java

public class ShapeFactoryImplementation implements ShapeFactory
{
 public Shape makeCircle()
 {
 return new Circle();
 }

 public Shape makeSquare()
 {
 return new Square();
 }
}

Notice that this completely solves the problem of depending on concrete classes. The application code no
longer depends on Circle or Square, and yet it still manages to create instances of them. It manipulates those
instances through the Shape interface and never invokes methods that are specific to Square or Circle.

The problem of depending on a concrete class has been moved. Someone must create ShapeFactory-
Implementation, but nobody else ever needs to create Square or Circle. ShapeFactoryImplementation
will most likely be created by main or by an initialization function attached to main.

A Dependency Cycle

Astute readers will recognize that there is a problem with this form of the FACTORY pattern. The class
ShapeFactory has a method for each of the derivatives of Shape. This results in a dependency cycle that makes
it difficult to add new derivatives to Shape. Every time we add a new Shape derivative, we have to add a method
to the ShapeFactory interface. In most cases, this means we’ll have to recompile and redeploy all the users of
ShapeFactory.3

We can get rid of this dependency cycle by sacrificing a little type safety. Instead of giving
ShapeFactory one method for every Shape derivative, we can give it just one make function that takes a
String. For example, look at Listing 21-3. This technique requires that ShapeFactoryImplementation use
an if/else chain on the incoming argument to select which derivative of Shape to instantiate. This is shown
in Listings 21-4 and 21-5.

3. Again, this isn’t exactly necessary in Java. You might get away without recompiling and redeploying clients of a changed interface, but
it’s a risky business.

271
www.EBooksWorld.ir

Chapter 21 • Factory

Listing 21-3

A snippet that creates a circle

public void testCreateCircle() throws Exception
{
 Shape s = factory.make("Circle");
 assert(s instanceof Circle);
}

Listing 21-4

ShapeFactory.java

public interface ShapeFactory
{
 public Shape make(String shapeName) throws Exception;
}

Listing 21-5

ShapeFactoryImplementation.java

public class ShapeFactoryImplementation implements ShapeFactory
{
 public Shape make(String shapeName) throws Exception
 {
 if (shapeName.equals("Circle"))
 return new Circle();
 else if (shapeName.equals("Square"))
 return new Square();
 else
 throw new Exception(
 "ShapeFactory cannot create " + shapeName);
 }
}

One might argue that this is dangerous because callers who misspell the name of a shape will get a run-time
error instead of a compile time error. This is true. However, if you are writing the appropriate number of unit tests
and applying test-driven development, then you’ll catch these run-time errors long before they become problems.

Substitutable Factories
One of the great benefits of using factories is the ability to substitute one implementation of a factory for another.
In this way, you can substitute families of objects within an application.

For example, imagine an application that had to adapt to many different database implementations. In our
example, let’s assume that the users can either use flat files or they can purchase an Oracle™ adapter. We might use
the PROXY4 pattern to isolate the application from the database implementation. We might also use factories to
instantiate the proxies. Figure 21-3 shows the structure.

Notice that there are two implementations of EmployeeFactory. One creates proxies that work with flat
files, and the other creates proxies that work with Oracle™. Notice also that the application does not know or care
which is being used.

4. We’ll study PROXY later on page 327. Right now, all you need to know is that a PROXY is a class that knows how to read particular
objects out of particular kinds of databases.

272
www.EBooksWorld.ir

Using Factories for Test Fixtures

Using Factories for Test Fixtures
When writing unit tests, we often want to test the behavior of a module in isolation from the modules it uses. For
example, we might have a Payroll application that uses a database. (See Figure 21-4.) We may wish to test the
function of the Payroll module without using the database at all.

We can accomplish this by using an abstract interface for the database. One implementation of this abstract
interface uses the real database. Another implementation is test-code written to simulate the behavior of the data-
base and to check that the database calls are being made correctly. Figure 21-5 shows the structure. The
PayrollTest module tests the PayrollModule by making calls to it. It also implements the Database inter-
face so that it can trap the calls that Payroll makes to the database. This allows PayrollTest to ensure that
Payroll is behaving properly. It also allows PayrollTest to simulate many kinds of database failures and prob-
lems that are otherwise difficult to create. This is a technique that is sometimes known as spoofing.

Figure 21-3 Substitutable Factory

Application

Oracle
Employee

Proxy

Oracle
TimeCard

Proxy

FlatFile
TimeCard

Proxy

Oracle
Employee
Factory

FlatFile
Employee
Factory

FlatFile
Employee

Proxy

Employee

«interface»

+ makeEmp
+ makeTimecard

Employee
Factory

«interface»
TimeCard
«interface»

«creates»

«creates»

Figure 21-4 Payroll uses Database

Payroll Database

Figure 21-5 PayrollTest Spoofs Database

Payroll

PayrollTest
Database

Implementation

«interface»
Database

However, how does Payroll get the instance of PayrollTest it uses as the Database. Certainly
Payroll isn’t going to do the creation of PayrollTest. Just as clearly, Payroll must somehow get a reference
to the Database implementation it’s going to use.

In some cases, it is perfectly natural for PayrollTest to pass the Database reference to Payroll. In
other cases, it may be that PayrollTest must set a global variable to refer to the Database. In still others,
Payroll may be fully expecting to create the Database instance. In that last case, we can use a Factory to fool
Payroll into creating the test version of the Database by passing an alternate factory to Payroll.

273
www.EBooksWorld.ir

Chapter 21 • Factory

Figure 21-6 shows a possible structure. The Payroll module acquires the factory through a global variable
(or a static variable in a global class) named GdatabaseFactory. The PayrollTest module implements
DatabaseFactory and sets a reference to itself into that GdatabaseFactory. When Payroll uses the factory
to create a Database, the PayrollTest module traps the call and passes back a reference to itself. Thus,
Payroll is convinced that it has created the PayrollDatabase, and yet the PayrollTest module can fully
spoof the Payroll module and trap all database calls.

How Important Is It to Use Factories?
A strict interpretation of the DIP would insist on using factories for every volatile class in the system. What’s
more, the power of the FACTORY pattern is seductive. These two factors can sometimes seduce developers into
using factories by default. This is an extreme that I don’t recommend.

I don’t start out using factories. I only put them into the system when the need for them becomes great
enough. For example, if it becomes necessary to use the PROXY pattern, then it will probably become necessary to
use a factory to create the persistent objects. Or if, through unit testing, I come across situations where I must
spoof the creator of an object, then I will likely use a factory. But I don’t start out assuming that factories will be
necessary.

Factories are a complexity that can often be avoided, especially in the early phases of an evolving design.
When they are employed by default, they dramatically increase the difficulty of extending the design. In order to
create a new class, one may have to create as many as four new classes. The four are the two interface classes that
represent the new class and its factory and the two concrete classes that implement those interfaces.

Conclusion
Factories are powerful tools. They can be of great benefit in conforming to the DIP. They allow high-level policy
modules to create instances of classes without depending on the concrete implementations of those classes. They
also make it possible to swap in completely different families of implementations for a group of classes. However,
factories are a complexity that can often be avoided. Using them by default is seldom the best course of action.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.

Figure 21-6 Spoofing the Factory

«interface»
Database
Factory

DatabasePayroll

PayrollTest

Database
Factory

Implementation

Database
Implementation

«interface»

«creates»

«global»
GdatabaseFactory

274
www.EBooksWorld.ir

22

The Payroll Case Study (Part 2)

“Rule of thumb: if you think something is clever and sophisticated, beware—
it is probably self-indulgence.”

—Donald A. Norman, 1990
(The Design of Everyday Things, Donald A. Norman, Doubleday, 1990)

We have done a great deal of analysis, design, and implementation for the Payroll problem. However, we still have
many decisions to make. For one thing, the number of programmers who have been working on the problem is—
one (me). The current structure of the development environment is consistent with this. All the program files are
located in a single directory. There is no higher order structure at all. There are no packages, no subsystems, no
releasable units other than the entire application. This will not do going forward.

We must assume that as this program grows, the number of people working on it will grow too. In order to
make it convenient for multiple developers, we are going to have to partition the source code into packages that
can be conveniently checked out, modified, and tested.

The payroll application currently consists of 3280 lines of code divided into about 50 different classes and
100 different source files. Although this is not a huge number, it does represent an organizational burden. How
should we manage these source files?

Along similar lines, how should we divide the work of implementation so that the development can proceed
smoothly without the programmers getting in each other’s way. We would like to divide the classes into groups
that are convenient for individuals or teams to check out and support.

From Chapter 22 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

275
www.EBooksWorld.ir

Chapter 22 • The Payroll Case Study (Part 2)

Package Structure and Notation
The diagram in Figure 22-1 shows a possible package structure for the payroll application. We will address the
appropriateness of this structure later. For now, we will confine ourselves to how such a structure is documented
and used.

See page 481 for a description of the UML notation for packages. By convention, package diagrams are
drawn with the dependencies pointing downwards. Packages at the top are dependent. Packages at the bottom
are depended on.

Figure 22-1 has divided the payroll application into eight packages. The PayrollApplication package contains
the PayrollApplication class and the TransactionSource and TextParserTransactionSource classes. The
Transactions package contains the complete Transaction-class hierarchy. The constituents of the other packages
should be clear by carefully examining the diagram.

The dependencies should also be clear. The PayrollApplication package depends on the
Transactions package because the PayrollApplication class calls the Transaction::Execute method.
The Transactions package depends on the PayrollDatabase package because each of the many derivatives
of Transaction communicate directly with the PayrollDatabase class. The other dependencies are likewise
justifiable.

What criteria did I use to group these classes into packages? I simply stuck the classes that look like they
belonged together into the same packages. As we learned in Chapter 20, this is probably not a good idea.

Consider what happens if we make a change to the Classifications package. This change will force a
recompilation and retest of the EmployeeDatabase package, and well it should. But it will also force a recompi-
lation and retest of the Transactions package. Certainly the ChangeClassificationTransaction and its
three derivatives from Figure 19-3 should be recompiled and retested, but why should the others be recompiled
and retested?

Technically, those other transactions don’t need recompilation and retest. However, if they are part of the
Transactions package, and if the package is going to be rereleased to deal with the changes to the

Figure 22-1 Possible Payroll Package Diagram

Payroll
Application

+ PayrollApplication
+ TransactionSource
+ TextParserTransactionSource

Payroll
Database

+ PayrollDatabase
+ Employee

Application

+ Application

Transactions

+ Transaction
+ (All Derivatives)

Methods

+ PaymentMethod
+ (All Derivatives)

Schedules

+ PaymentSchedule
+ (All Derivatives)

Affiliations

+ Affiliation
+ UnionAffiliation
+ ServiceCharge

Classifications

+ PaymentClassification
+ (All Derivatives)
+ TimeCard
+ SalesReceipt

276
www.EBooksWorld.ir

Applying the Common-Closure Principle (CCP)

Classifications package, then it could be viewed as irresponsible not to recompile and retest the package as a
whole. Even if all the transactions aren’t recompiled and retested, the package itself must be rereleased and re-
deployed, and then all of its clients will require revalidation at the very least, and probably recompilation.

The classes in the Transactions package do not share the same closure. Each one is sensitive to its own
particular changes. The ServiceChargeTransaction is open to changes to the ServiceCharge class, whereas
the TimeCardTransaction is open to changes to the TimeCard class. In fact, as the diagram in Figure 22-1
implies, some portion of the Transactions package is dependent on nearly every other part of the software.
Thus, this package suffers a very high rate of release. Every time something is changed anywhere below, the
Transactions package will have to be revalidated and rereleased.

The PayrollApplication package is even more sensitive: any change to any part of the system will affect
this package, so its release rate must be enormous. You might think that this is inevitable—that as one climbs
higher up the package-dependency hierarchy, the release rate must increase. Fortunately, however, this is not true,
and avoiding this symptom is one of the major goals of OOD.

Applying the Common-Closure Principle (CCP)
Consider Figure 22-2. This diagram groups the classes of the payroll application together according to their clo-
sure. For example, the PayrollApplication package contains the PayrollApplication and Transaction-
Source classes. These two classes both depend on the abstract Transaction class, which is in the

Figure 22-2 A Closed Package Hierarchy for the Payroll Application

Text Parser

TextParserTransactionSource

Application
Application

Payroll Domain

Employee
Affiliation
PayrollClassification
PayrollSchedule
Affiliations
PayrollMethod
Transaction

Classifications

HourlyClassification
CommissionedClassification
SalariedClassification
ChangeClassificationTransaction
 & Derivatives
TimeCard
SalesReceipt

Methods

MailMethod
HoldMethod
DirectMethod
ChangeMethodTransaction
 & Derivatives

Schedules

WeeklySchedule
MonthlySchedule
BiweeklySchedule
ChangeScheduleTransaction
 & Derivatives

Affiliations

UnionAffiliation
ServiceCharge
ChangeAffiliationTransaction
 & Derivatives

Payroll Application

PayrollApplication
TransactionSource

Payroll Database
Implementation

Payroll Database

Payroll Database

277
www.EBooksWorld.ir

Chapter 22 • The Payroll Case Study (Part 2)

PayrollDomain package. Note that the TextParserTransactionSource class is in another package that
depends on the abstract PayrollApplication class. This creates an upside-down structure in which the details
depend on the generalities, and the generalities are independent. This conforms to the DIP.

The most striking case of generality and independence is the PayrollDomain package. This package
contains the essence of the whole system, yet it depends on nothing! Examine this package carefully. It
contains Employee, PaymentClassification, PaymentMethod, PaymentSchedule, Affiliation, and
Transaction. This package contains all of the major abstractions in our model, yet it has no dependencies.
Why? Because nearly all of the classes it contains are abstract.

Consider the Classifications package, which contains the three derivatives of PaymentClassification.
It also contains the ChangeClassificationTransaction class and its three derivatives, along with TimeCard and
SalesReceipt. Notice that any change made to these nine classes is isolated; other than TextParser, no other pack-
age is affected! Such isolation also holds for the Methods package, the Schedules package, and the Affiliations
package. This is quite a bit of isolation.

Notice that the bulk of the executable code is in packages that have few or no dependents. Since almost noth-
ing depends on them, we call them irresponsible. The code within those packages is tremendously flexible; it can
be changed without affecting many other parts of the project. Notice also that the most general packages of the
system contain the least amount of executable code. These packages are heavily depended on, but depend on noth-
ing. Since many packages depend on them, we call them responsible, and since they don’t depend on anything, we
call them independent. Thus, the amount of responsible code (i.e., code in which changes would affect lots of other
code) is very small. Moreover, that small amount of responsible code is also independent, which means that no
other modules will induce it to change. This upside-down structure, with highly independent and responsible gen-
eralities at the bottom, and highly irresponsible and dependent details at the top, is the hallmark of object-oriented
design.

Contrast Figure 22-1 with Figure 22-2. Notice that the details at the bottom of Figure 22-1 are independent
and highly responsible. This is the wrong place for details! Details should depend on the major architectural deci-
sions of the system and should not be depended on. Notice also that the generalities, the packages that define the
architecture of the system, are irresponsible and highly dependent. Thus, the packages that define the architectural
decisions depend on, and are thus constrained by, the packages that contain the implementation details. This is a
violation of the SAP. It would be better if the architecture constrained the details!

Applying the Reuse–Release Equivalency Principle (REP)
What portions of the payroll application can we reuse? If another division of our company wanted to reuse our
payroll system, but they had a completely different set of policies, they could not reuse Classifications,
Methods, Schedules, or Affiliations. However, they could reuse PayrollDomain, Payroll-

Application, Application, PayrollDatabase, and possibly PDImplementation. On the other hand, if
another department wanted to write software that analyzed the current employee database, they could reuse
PayrollDomain, Classifications, Methods, Schedules, Affiliations, PayrollDatabase, and
PDImplementation. In each case, the granule of reuse is a package.

Seldom, if ever, would only a single class from a package be reused. The reason is simple: the classes within
a package should be cohesive. That means that they depend on one another and cannot be easily or sensibly sepa-
rated. It would make no sense, for example, to use the Employee class without using the PaymentMethod class.
In fact, in order to do so, you would have to modify the Employee class so that it did not contain a
PaymentMethod class. Certainly we don’t want to support the kind of reuse that forces us to modify the reused
components. Therefore, the granule of reuse is the package. This gives us another cohesion criterion to employ
when trying to group classes into packages: not only should the classes be closed together, they should also be
reusable together in conformance with the REP.

278
www.EBooksWorld.ir

Coupling and Encapsulation

Consider again our original package diagram in Figure 22-1. The packages that we might like to reuse, like
Transactions or PayrollDatabase, are not easily reusable because they drag along a lot of extra baggage.
The PayrollApplication package is horribly dependent (it depends on everything). If we wanted to create a
new payroll application that used a different set of schedule, method, affiliation, and classification policies, we
would not be able to use this package as a whole. Instead, we would have to take individual classes from
PayrollApplication, Transactions, Methods, Schedules, Classifications, and Affiliations. By
disassembling the packages in this way, we destroy their release structure. We cannot say that Release 3.2 of
PayrollApplication is reusable.

Figure 22-1 violates the CRP. Thus, having accepted the reusable fragments of our various packages, the
reuser will be faced with a difficult management problem: he will not be able to depend on our release structure. A
new release of Methods affects him because he is reusing the PaymentMethod class. Most of the time, the
changes will be to classes that he is not reusing, yet he must still track our new release number and probably
recompile and retest his code.

This can be so difficult to manage that the reuser’s most likely strategy will be to make a copy of the reusable
components and evolve that copy separately from ours. This is not reuse. The two pieces of code will become dif-
ferent and will require independent support, effectively doubling the support burden.

These problems are not exhibited by the structure in Figure 22-2. The packages in that structure are easier to
reuse. PayrollDomain does not drag along much baggage. It is reusable independently of any of the derivatives
of PaymentMethod, PaymentClassification, PaymentSchedule, etc.

The astute reader will notice that the package diagram in Figure 22-2 does not completely conform to the
CRP. Specifically, the classes within PayrollDomain do not form the smallest reusable unit. The Transaction
class does not need to be reused with the rest of the package. We could design many applications that access the
Employee and its fields, but never use a Transaction.

This suggests a change to the package diagram, as shown in Figure 22-3. This separates the transactions
from the elements that they manipulate. For example, the classes in the MethodTransactions package manipu-
late the classes in the Methods package. We have moved the Transaction class into a new package named
TransactionApplication, which also contains TransactionSource and a class named Transaction-
Application. These three form a reusable unit. The PayrollApplication class has now become the grand
unifier. It contains the main program and also a derivative of TransactionApplication called
PayrollApplication, which ties the TextParserTransactionSource to the TransactionApplication.

These manipulations have added yet another layer of abstraction to the design. The Transaction-
Application package can now be reused by any application that obtains Transactions from a
TransactionSource and then Executes them. The PayrollApplication package is no longer reusable,
since it is extremely dependent. However, the TransactionApplication package has taken its place, and is
more general. Now we can reuse the PayrollDomain package without any Transactions.

This certainly improves the reusability and maintainability of the project, but at the cost of five extra pack-
ages and a more complex dependency architecture. The value of the trade-off depends on the type of reuse that we
might expect and the rate at which we expect the application to evolve. If the application remains very stable, and
few clients reuse it, then this change is overkill. On the other hand, if many applications will reuse this structure, or
we expect the application to experience many changes, then the new structure is superior—it’s a judgment call;
and it should be driven by data rather then speculation. It is best to start simple and grow the package structure as
necessary. Package structures can always be made more elaborate if necessary.

Coupling and Encapsulation
Just as the coupling among classes is managed by encapsulation boundaries in Java and C++, so the couplings
among packages can be managed by the export adornments of the UML.

279
www.EBooksWorld.ir

Chapter 22 • The Payroll Case Study (Part 2)

If a class within one package is to be used by another package, that class must be exported. In UML, classes are
exported by default, but we may adorn a package to denote that certain classes should not be exported. Figure 22-4, a
blowup of the Classifications package, shows that the three derivatives of PaymentClassification are
exported, but that TimeCard and SalesReceipt are not. This means that other packages will not be able to use
TimeCard and SalesReceipt; they are private to the Classifications package.

We may want to hide certain classes within a package to prevent afferent couplings. Classifications is a
very detailed package that contains the implementations of several payment policies. In order to keep this package
on the main sequence, we want to limit its afferent couplings, so we hide the classes that other packages don’t need
to know about.

Figure 22-3 Updated Payroll Package Diagram

Figure 22-4 Private Classes in Classifications Package

Payroll
Application

Payroll
Domain

PayrollDatabase
Implementation

Payroll
Database

TextParser
Transaction
Source

Transaction
Application

Application

Classifications

Methods

Schedules

Affiliations

Classification
Transactions

Method
Transactions

Affiliation
Transactions

General
Transactions

Classifications

+ HourlyClassification
+ CommissionedClassification
+ SalariedClassification
- TimeCard
- SalesReceipt

280
www.EBooksWorld.ir

Metrics

TimeCard and SalesReceipt are good choices for private classes. They are implementation details of the
mechanisms for calculating an employee’s pay. We want to remain free to alter these details, so we need to prevent
anyone else from depending on their structure.

A quick glance at Figure 19-7 through Figure 19-10 and Listing 19-15 (page 213 through page 217) shows
that the TimeCardTransaction and SalesReceiptTransaction classes already depend on TimeCard and
SalesReceipt. We can easily resolve this problem, however, as shown in Figure 22-5 and Figure 22-6.

Metrics
As we showed in Chapter 20, we can quantify the attributes of cohesion, coupling, stability, generality, and con-
formance to the main sequence with a few simple metrics. But why should we want to? To paraphrase Tom
DeMarco: You can’t manage what you can’t control, and you can’t control what you don’t measure.1 To be effec-
tive software engineers or software managers, we must be able to control software development practice. If we
don’t measure it, however, we will never have that control.

By applying the heuristics described below and calculating some fundamental metrics about our object-
oriented designs, we can begin to correlate those metrics with measured performance of the software and of the
teams that develop it. The more metrics we gather, the more information we will have, and the more control we
will eventually be able to exert.

The metrics below have been successfully applied to a number of projects since 1994. There are several
automatic tools that will calculate them for you, and they are not hard to calculate by hand. It is also not hard to
write a simple shell, python, or ruby script to walk through your source files and calculate them.2

Figure 22-5 Revision to TimeCardTransaction to Protect TimeCard Privacy

Figure 22-6 Revision to SalesReceiptTransaction to Protect SalesReceipt Privacy

1. [DeMarco82], p. 3.

2. For an example of a shell script, you can download depend.sh from the freeware section of www.objectmentor.com., or take a
look at JDepend at www.clarkware.com.

Execute
GetEmployee

hours date

Timecard
Transaction

hc:Hourly
Classification

PayrollDatabase
«global»

emp:Employee

empid emp
hc

GetPaymentClassification

hc is downcast from
PaymentClassification

AddTimecard

Execute
GetEmployee

amount date

SalesReceipt
Transaction

cc:
Commissioned
Classification

PayrollDatabase
«global»

emp:Employee

empid emp
cc

GetPaymentClassification

cc is downcast from
PaymentClassification

AddSalesReceipt

281
www.EBooksWorld.ir

Chapter 22 • The Payroll Case Study (Part 2)

• (H) Relational Cohesion. One aspect of the cohesion of a package can be represented as the average num-
ber of internal relationships per class. Let R be the number of class relationships that are internal to the pack-
age (i.e., that do not connect to classes outside the package). Let N be the number of classes within the
package). The extra 1 in the formula prevents H = 0 when N = 1. It represents the relationship that the pack-
age has to all its classes.

• (Ca) Afferent coupling can be calculated as the number of classes from other packages that depend on the
classes within the subject package. These dependencies are class relationships, such as inheritance and asso-
ciation.

• (Ce) Efferent coupling can be calculated as the number of classes in other packages that the classes in the
subject package depend on. As before, these dependencies are class relationships.

• (A) Abstractness or Generality can be calculated as the ratio of the number of abstract classes (or inter-
faces) in the package to the total number of classes (and interfaces) in the package.3 This metric ranges from
0 to 1.

• (I) Instability can be calculated as the ratio of efferent coupling to total coupling. This metric also ranges
from 0 to 1.

• (D) Distance from the Main Sequence. The main sequence is idealized by the line A + I = 1. The formula
for D calculates the distance of any particular package from the main sequence. It ranges from ~.7 to 0;4 the
closer to 0, the better.

• (D′) Normalized Distance from the Main Sequence. This metric represents the D metric normalized to the
range [0,1]. It is perhaps a little more convenient to calculate and to interpret. The value 0 represents a pack-
age that is coincident with the main sequence. The value 1 represents a package that is as far from the main
sequence as is possible.

Applying the Metrics to the Payroll Application
Table 22-1 shows how the classes in the payroll model have been allocated to packages. Figure 22-7 shows the
package diagram for the payroll application with all the metrics calculated. And Table 22-2 shows all of the met-
rics calculated for each package.

3. One might think that a better formula for A is the ratio of pure virtual functions to total member functions within the package. However,
I have found that this formula weakens the abstraction metric too much. Even one pure virtual function will make a class abstract,
and the power of that abstraction is more significant than the fact that the class may have dozens of concrete functions, especially when
the DIP is being followed.

4. It is impossible to plot any package outside the unit square on the graph of A vs. I. This is because neither A nor I can exceed 1. The
main sequence bisects this square from (0,1) to (1,0). The points within the square that are farthest from the main sequence are the two
corners (0,0) and (1,1). Their distance from the main sequence is

H
R 1+

N
-------------=

A
Abstract Classes

Total Classes
---------------------------------------=

I
Ce

Ce Ca+
-------------------=

2
2

------- 0.70710678…=

D
A I 1–+

2
------------------------=

D′ A I 1–+=

282
www.EBooksWorld.ir

Applying the Metrics to the Payroll Application

Each package dependency in Figure 22-7 is adorned with two numbers. The number closest to the depender
package represents the number of classes in that package that depend on the dependee package. The number closest
to the dependee package represents the number of classes in that package that the depender package depends on.

Table 22-1

Package Classes in Package

Affiliations ServiceCharge UnionAffiliation

AffiliationTransactions ChangeAffiliationTransaction ChangeUnaffiliated-
Transaction

ChangeMember-
Transaction

ServiceChargeTransaction

Application Application

Classifications CommissionedClassification HourlyClassification SalariedClassification

SalesReceipt Timecard

ClassificationTransaction ChangeClassification-
Transaction

ChangeCommissioned-
Transaction

ChangeHourly-
Transaction

ChangeSalariedTransaction SalesReceiptTransaction TimecardTransaction

GeneralTransactions AddCommissionedEmployee AddEmployeeTransaction AddHourlyEmployee

AddSalariedEmployee ChangeAddressTransaction ChangeEmployee-
Transaction

ChangeNameTransaction DeleteEmployeeTransaction PaydayTransaction

Methods DirectMethod HoldMethod MailMethod

MethodTransactions ChangeDirectTransaction ChangeHoldTransaction ChangeMailTransaction

ChangeMethodTransaction

PayrollApplication PayrollApplication

PayrollDatabase PayrollDatabase

PayrollDatabase-
Implementation

PayrollDatabase-
Implementation

PayrollDomain Affiliation Employee PaymentClassification

PaymentMethod PaymentSchedule

Schedules BiweeklySchedule MonthlySchedule WeeklySchedule

TextParserTransaction-
Source

TextParserTransactionSource

TransactionApplication TransactionApplication Transaction TransactionSource

283
www.EBooksWorld.ir

Chapter 22 • The Payroll Case Study (Part 2)

Each package in Figure 22-7 is adorned with the metrics that apply to it. Many of these metrics are encour-
aging. PayrollApplication, PayrollDomain, and PayrollDatabase, for example, have high relational
cohesion and are either on or close to the main sequence. However, the Classifications, Methods, and
Schedules packages show generally poor relational cohesion and are almost as far from the main sequence as is
possible!

These numbers tell us that the partitioning of the classes into packages is weak. If we don’t find a way to
improve the numbers, then the development environment will be sensitive to change, which may cause unnecessary
rerelease and retesting. Specifically, we have low-abstraction packages like ClassificationTransactions
depending heavily on other low-abstraction packages like Classifications. Classes with low abstraction contain
most of the detailed code and are therefore likely to change, which will force rerelease of the packages that depend on
them. Thus the ClassificationTransactions package will have a very high release rate since it is subject to
both its own high change rate and that of Classifications. As much as possible, we would like to limit the sensi-
tivity of our development environment to change.

Clearly, if we have only two or three developers, they will be able to manage the development environment
“in their heads,” and the need to maintain packages on the main sequence, for this purpose, will not be great. The

Figure 22-7 Package Diagram with Metrics

Payroll
Application

Payroll
Domain

PayrollDatabase
Implementation

Payroll
Database

TextParser
Transaction
Source

Transaction
Application

Application

Classifications

Methods

Schedules

Affiliations

Classification
Transactions

Method
Transactions

Affiliation
Transactions

General
Transactions

H: 1
D': 0

H: 1
D': 0.1

H: 1
D': 0

H: 1
D': 0.08

H: 1
D': .05

1

1

1

1 1

1 1

1

1
1

1

2
2 2

5

H: 1
D': 0.11

H: 0.75
D': 0.12

H: 0.67
D': 0.03

H: 1
D': 0

H: 1
D': 0.67

H: 0.33
D': 0.86

H: 0.33
D': 0.8

H: 0.06
D': 0.73

H: 1
D': 0

H: 1
D': 0.2

3

3

4

7

1

1
1
3 3

1

3

5

2

2
2

1

1

11

13

13

13

7

39
11

2

H: 1
D': 0.1

2

1
1

3
6 3
5

112

3 1 3

3
3

1
7

284
www.EBooksWorld.ir

Applying the Metrics to the Payroll Application

more developers there are, however, the more difficult it is to keep the development environment sane. Moreover,
the work required to obtain these metrics is minimal compared to the work required to do even a single retest and
rerelease.5 Therefore, it is a judgment call as to whether the work of computing these metrics will be a short-term
loss or gain.

Object Factories

Classifications and ClassificationTransactions are so heavily depended on because the classes within
them must be instantiated. For example, the TextParserTransactionSource class must be able to create
AddHourlyEmployeeTransaction objects; thus, there is an afferent coupling from the TextParser-
TransactionSource package to the ClassificationTransactions package. Also, the ChangeHourly-
Transaction class must be able to create HourlyClassification objects, so there is an afferent coupling
from the ClassificationTransactions package to the Classification package.

Almost every other use of the objects within these packages is through their abstract interface. Were it not
for the need to create each concrete object, the afferent couplings on these packages would not exist. For example,
if TextParserTransactionSource did not need to create the different transactions, it would not depend on the
four packages containing the transaction implementations.

This problem can be significantly mitigated by using the FACTORY pattern. Each package provides an object
factory that is responsible for creating all the public objects within that package.

Table 22-2

Package Name N A Ca Ce R H I A D D′

Affiliations 2 0 2 1 1 1 .33 0 .47 .67

AffiliationTransactions 4 1 1 7 2 .75 .88 .25 .09 .12

Application 1 1 1 0 0 1 0 1 0 0

Classifications 5 0 8 3 2 .06 .27 0 .51 .73

ClassificationTransaction 6 1 1 14 5 1 .93 .17 .07 .10

GeneralTransactions 9 2 4 12 5 .67 .75 .22 .02 .03

Methods 3 0 4 1 0 .33 .20 0 .57 .80

MethodTransactions 4 1 1 6 3 1 .86 .25 .08 .11

PayrollApplication 1 0 0 2 0 1 1 0 0 0

PayrollDatabase 1 1 11 1 0 1 .08 1 .06 .08

PayrollDatabaseImpl... 1 0 0 1 0 1 1 0 0 0

PayrollDomain 5 4 26 0 4 1 0 .80 .14 .20

Schedules 3 0 6 1 0 .33 .14 0 .61 .86

TextParserTransactionSource 1 0 1 20 0 1 .95 0 .03 .05

TransactionApplication 3 3 9 1 2 1 .1 1 .07 .10

5. I spent about two hours compiling by hand the statistics and computing the metrics for the payroll example. Had I used one of the com-
monly available tools, it would have taken virtually no time at all.

285
www.EBooksWorld.ir

Chapter 22 • The Payroll Case Study (Part 2)

The Object Factory for TransactionImplementation

Figure 22-8 shows how to build an object factory for the TransactionImplementation package. The
TransactionFactory package contains the abstract base class, which defines the pure virtual functions that rep-
resent the constructors for the concrete transaction objects. The TransactionImplementation package con-
tains the concrete derivative of the TransactionFactory class and uses all the concrete transactions in order to
create them.

The TransactionFactory class has a static member declared as a TransactionFactory pointer. This
member must be initialized by the main program to point to an instance of the concrete Transaction-
FactoryImplementation object.

Initializing the Factories

In order to create objects using the object factories, the static members of the abstract object factories must be
initialized to point to the appropriate concrete factory. This must be done before any user attempts to use the
factory. The best place to do this is usually the main program, which means that the main program depends on
all the factories and on all the concrete packages. Thus, each concrete package will have at least one afferent
coupling from the main program. This will force the concrete package off the main sequence a bit, but it cannot

Figure 22-8 Object Factory for Transactions

AddSalaried
Transaction

Timecard
Transaction

SalesReceipt
Transaction

AddHourly
Transaction

ChangeHourly
Transaction

ChangeMail
Transaction

ChangeDirect
Transaction

ChangeHold
Transaction

Payday
Transaction

Add
Commissioned
Transaction

Delete
Employee
Transaction

Change
Commissioned
Transaction

Change
Member

Transaction

Change
Unaffiliated
Transaction

Change
Salaried

Transaction

Transaction
Factory

Implementation

«creates»

TransactionFactory

Transaction
Factory

Transaction
Implementation

«interface»

+ transactionFactory

+ makeAddSalaryTransaction
+ makeAddHourlyTransaction
+ makeAddCommissionedTransaction
+ makeDeleteEmployeeTransaction
+ makePaydayTransaction
+ makeTimecardTransaction
+ makeSalesReceiptTransaction
....

286
www.EBooksWorld.ir

The Final Package Structure

be helped.6 It means that we must rerelease the main program every time we change any of the concrete pack-
ages. Of course we should probably rerelease the main program for each change anyway, since it will need to be
tested regardless.

Figures 22-9 and 22-10 show the static and dynamic structure of the main program in relation to the object
factories.

Rethinking the Cohesion Boundaries

We initially separated Classifications, Methods, Schedules, and Affiliations in Figure 22-1. At the
time, it seemed like a reasonable partitioning. After all, other users may want to reuse our schedule classes without
reusing our affiliation classes. This partitioning was maintained after we split out the transactions into their own
packages, creating a dual hierarchy. Perhaps this was too much. The diagram in Figure 22-7 is very tangled.

A tangled package diagram makes the management of releases difficult if it is done by hand. Although pack-
age diagrams would work well with an automated project-planning tool, most of us don’t have that luxury. Thus,
we need to keep our package diagrams as simple as is practical.

In my view, the transaction partitioning is more important than the functional partitioning. Thus, we will
merge the transactions into a single TransactionImplementation package in Figure 22-11. We will also
merge the Classifications, Schedules, Methods, and Affiliations packages into a single Payroll-
Implementation package.

The Final Package Structure
Table 22-3 shows the final allocation of classes to class package. Table 22-4
contains the metrics spreadsheet. Figure 22-11 shows the final package struc-
ture, which employs object factories to bring the concrete packages near the
main sequence

6. As a practical solution, I usually ignore couplings from the main program.

s

Figure 22-9 Static Structure of Main Program and Object Factories

Figure 22-10 Dynamic Structure of Main Program and Object Factories

Transaction
Factory

Payroll
Factory

Payroll
Application

Transaction
Factory

Implementation

Payroll
Factory

Implementation

Payroll
Application

Payroll
Factory

Transaction
Factory

tfi:Transaction
Factory

Implementation

pfi:
PayrollFactory
Implementation

SetFactory(tfi)

SetFactory(pfi)

287
www.EBooksWorld.ir

Chapter 22 • The Payroll Case Study (Part 2)

Table 22-3

Packages Classes in Packages

AbstractTransactions AddEmployeeTransaction ChangeAffiliationTransaction ChangeEmployee-
Transaction

ChangeClassification-
Transaction

ChangeMethodTransaction

Application Application

PayrollApplication PayrollApplication

PayrollDatabase PayrollDatabase

PayrollDatabaseImple-
mentation

PayrollDatabase-
Implementation

PayrollDomain Affiliation Employee PaymentClassification

PaymentMethod PaymentSchedule

PayrollFactory PayrollFactory

PayrollImplementation BiweeklySchedule CommissionedClassification DirectMethod

HoldMethod HourlyClassification MailMethod

MonthlySchedule PayrollFactory-
Implementation

SalariedClassification

SalesReceipt ServiceCharge Timecard

UnionAffiliation WeeklySchedule

TextParser-
TransactionSource

TextParserTransactionSource

Transaction-
Application

Transaction TransactionApplication TransactionSource

TransactionFactory TransactionFactory

Transaction-
Implementation

AddCommissionedEmployee AddHourlyEmployee AddSalariedEmployee

ChangeAddressTransaction ChangeCommissioned-
Transaction

ChangeDirectTransaction

ChangeHoldTransaction ChangeHourlyTransaction ChangeMailTransaction

ChangeMemberTransaction ChangeNameTransaction ChangeSalariedTransaction

ChangeUnaffiliatedTransaction DeleteEmployee PaydayTransaction

SalesReceiptTransaction ServiceChargeTransaction TimecardTransaction

TransactionFactory-
Implementation

288
www.EBooksWorld.ir

The Final Package Structure

Table 22-4

Package Name N A Ca Ce R H I A D D′

AbstractTransactions 5 5 13 1 0 .20 .07 1 .05 .07

Application 1 1 1 0 0 1 0 1 0 0

PayrollApplication 1 0 0 5 0 1 1 0 0 0

PayrollDatabase 1 1 19 5 0 1 .21 1 .15 .21

PayrollDatabaseImpl... 1 0 0 1 0 1 1 0 0 0

PayrollDomain 5 4 30 0 4 1 0 .80 .14 .20

PayrollFactory 1 1 12 4 0 1 .25 1 .18 .25

PayrollImplementation 14 0 1 5 3 .29 .83 0 .12 .17

TextParserTransactionSource 1 0 1 3 0 1 .75 0 .18 .25

TransactionApplication 3 3 14 1 3 1.33 .07 1 .05 .07

TransactionFactory 1 1 3 1 0 1 .25 1 .18 .25

TransactionImplementation 19 0 1 14 0 .05 .93 0 .05 .07

Figure 22-11 Final Payroll Package Structure

Payroll
Application

Transaction
Factory

Payroll
Implementation

Payroll
Factory

Payroll
Domain

Payroll
Database

TextParser
Transaction

Source

Payroll
Database

Implementation

Abstract
TransactionsTransaction

Application

Application

Transaction
Implementation

H: 1
D': 0

H: 1
D': 0.25 H: 0.29

D': 0.25
H: 1
D': 0.25

H: 0.05
D': 0.07

H: 1.33
D': 0.07

H: 1

H: 0.2
D': 0.07

H: 1
D': 0

H: 1
D': 0.21

H: 1
D': 0.2

H: 1
D': 0.25

1

1

1

1

1

1

5

5

1

1

10

1 1

1

1

1

1

1 1 1

1

1
1

1 1

1

2

1

1

1

1

1

1

1

6

4 45

13 18 18
10

289
www.EBooksWorld.ir

Chapter 22 • The Payroll Case Study (Part 2)

The metrics on this diagram are heartening. The relational cohesions are all very high (thanks in part to the
relationships of the concrete factories to the objects that they create), and there are no significant deviations from
the main sequence. Thus, the couplings between our packages are appropriate to a sane development environment.
Our abstract packages are closed, reusable, and heavily depended on, while having few dependencies of their own.
Our concrete packages are segregated on the basis of reuse, are heavily dependent on the abstract packages, and
are not heavily depended on themselves.

Conclusion
The need to manage package structures is a function of the size of the program and the size of the development
team. Even small teams need to partition the source code so that they can stay out of each other’s way. Large pro-
grams can become opaque masses of source files without some kind of partitioning structure.

Bibliography

1. Benjamin/Cummings. Object-Oriented Analysis and Design with Applications, 2d ed.,1994.
2. DeMarco, Tom. Controlling Software Projects. Yourdon Press, 1982.

290
www.EBooksWorld.ir

SECTION 5

The Weather Station Case Study

The following chapters contain an in-depth case study of a simple weather monitoring system. Although this case
study is fictitious, it has nevertheless been constructed with a high degree of realism. We will encounter the prob-
lems of time pressure, legacy code, poor and mutating specifications, new untried technologies, etc. Our goal is to
demonstrate how the principles, patterns, and practices that we have learned are used in the real world of software
engineering.

As before, we will be encountering several useful design patterns while exploring the development of the
weather station. The chapters leading up to the case study will describe those patterns.

From Section 5 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

291
www.EBooksWorld.ir

292
www.EBooksWorld.ir

23

COMPOSITE

The COMPOSITE pattern is a very simple pattern that has significant implications. The fundamental structure of the
COMPOSITE pattern is shown in Figure 23-1. Here we see a hierarchy based on shapes. The Shape base class has
two derivative shapes named Circle and Square. The third derivative is the composite. CompositeShape keeps
a list of many Shape instances. When draw() is called on CompositeShape, it delegates that method to all the
Shape instances in the list.

Figure 23-1 Composite Pattern

Square

Circle

Shape

Composite
Shape

«interface»

+ draw()

+ add(Shape)
+ draw()

0..*

«delegates»

From Chapter 23 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

293
www.EBooksWorld.ir

Chapter 23 • Composite

Thus, an instance of CompositeShape appears to the system to be a single Shape. It can be passed to any
function or object that takes a Shape, and it will behave like a Shape. However, it is really a proxy1 for a group of
Shape instances.

Listing 23-1 and Listing 23-2 show one possible implementation of CompositeShape.

Listing 23-1

Shape.java

public interface Shape
{
 public void draw();
}

Listing 23-2

CompositeShape.java

import java.util.Vector;

public class CompositeShape implements Shape
{
 private Vector itsShapes = new Vector();
 public void add(Shape s)
 {
 itsShapes.add(s);
 }

 public void draw()
 {
 for (int i = 0; i < itsShapes.size(); i++)
 {
 Shape shape = (Shape) itsShapes.elementAt(i);
 shape.draw();
 }
 }
}

Example: Composite Commands
Consider the discussion of Sensors and Command objects we had back on page 152. Figure 13-3 showed a
Sensor class using a Command class. When the Sensor detected its stimulus, it called do() on the Command.

What I failed to mention in that discussion was that there were often cases when a Sensor had to execute
more than one Command. For example, when the paper reached a certain point in the paper path, it would trip an
optical sensor. That sensor then stopped a motor, started another, and engaged a particular clutch.

At first we took this to mean that every Sensor class would have to maintain a list of Command objects. (See
Figure 23-2.) However, we soon recognized that whenever a Sensor needed to execute more than one Command, it
always treated those Command objects identically. That is, it just iterated over the list and called do() on each
Command. This was ideal for the COMPOSITE pattern.

1. Notice the similarity in structure to the PROXY pattern.

Figure 23-2 Sensor containing many Commands

0..*
CommandSensor

294
www.EBooksWorld.ir

Multiplicity or Not Multiplicity

So we left the Sensor class alone and created a CompositeCommand as shown in Figure 23-3.

This meant that we didn’t have to change the Sensor or the Command. We were able to add the plurality of
Commands to a Sensor without changing either. This is an application of the OCP.

Multiplicity or Not Multiplicity
This leads to an interesting issue. We were able to make our Sensors behave as though they contained many
Commands, without having to modify the Sensors. There must be many other situations like this in normal soft-
ware design. There must be times when you could use COMPOSITE rather than building a list or vector of objects.

Let me say this a different way. The association between Sensor and Command is one-to-one. We were
tempted to change that association to one to many. But instead we found a way to get one-to-many behavior, with-
out a one-to-many relationship. A one-to-one relationship is much easier to understand, code, and maintain than a
one-to-many relationship is; so this was clearly the right design trade-off. How many of the one-to-many relation-
ships in your current project could be one-to-one if you used COMPOSITE?

Of course, not all one-to-many relationships can be reverted to one-to-one by using COMPOSITE. Only those
in which every object in the list is treated identically are candidates. For example, if you maintained a list of
employees and searched through that list for employees whose pay date is today, you probably shouldn’t use the
COMPOSITE pattern because you wouldn’t be treating all the employees identically.

Still, there are quite a few one-to-many relationships that qualify for conversion to COMPOSITE. And the
advantages are significant. Instead of duplicating the list management and iteration code in each of the clients, that
code appears only once in the composite class.

Figure 23-3 Composite Command

0..*
Command

Composite
Command

Sensor

295
www.EBooksWorld.ir

296
www.EBooksWorld.ir

24

OBSERVER—Backing into a Pattern

This chapter serves a special purpose. In it, I will describe the OBSERVER1 pattern, but that is a minor objective.
The primary objective of this chapter is to give you a demonstration of how your design and code can evolve to use
a pattern.

In the preceding chapters, we have made use of many patterns. Often we presented them as a fait accompli,
without showing how the code evolved to use the pattern. This might give you the idea that patterns are simply
something you insert into your code and designs in completed form. This is not what I advise. Rather, I prefer to
evolve the code I am working on in the direction of its needs. As I refactor it to resolve issues of coupling, simplic-
ity, and expressiveness, I may find that the code has come close to a particular pattern. When that happens, I
change the names of the classes and variables to use the name of the pattern, and change the structure of the code
to use the pattern in a more regular form. Thus the code backs into the pattern.

This chapter sets up a simple problem and then shows how the design and code evolve to solve that problem.
The result of the evolution winds up being the OBSERVER pattern. At each stage of the evolution, I will describe the
issues I’m trying to resolve, and then show the steps that resolve them.

The Digital Clock
We have a clock object. This object catches millisecond interrupts (known as tics) from the operating system and
turns them into the time of day. This object knows how to calculate seconds from milliseconds, minutes from sec-
onds, hours from minutes, days from hours, etc. It knows how many days are in a month, and how many months are
in a year. It knows all about leap years, when to have them, and when not. It knows about time. (See Figure 24-1.)

1. [GOF95], p. 293.

From Chapter 24 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

297
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

We’d like to create a digital clock that sits on our desktop and continuously displays the time of day. What is
the simplest way to accomplish this? We could write the following code:

public void DisplayTime
{
 while(1)
 {
 int sec = clock.getSeconds();
 int min = clock.getMinutes();
 int hour = clock.getHours();
 showTime(hour,min,sec);
 }
}

Clearly this is suboptimal. It consumes all available CPU cycles to repeatedly display the time. Most of those
displays will be wasted because the time will not have changed. It may be that this solution would be adequate in a
digital watch or a digital wall clock since conserving CPU cycles is not very important in those systems. However,
we don’t want this CPU hog running on our desktop.

The fundamental problem is how to efficiently get data from the Clock to the DigitalClock. I’m going to
assume that the Clock object and the DigitalClock object both exist. My interest is in how to connect them. I
can test that connection simply by making sure that the data I get from the Clock are the same data I send to the
DigitalClock.

A simple way to write this test is to create one interface that pretends to be the Clock and another that pre-
tends to be the DigitalClock. Then I can write special test objects that implement those interfaces and verify
that the connection between them works as expected. (See Figure 24-2.)

Figure 24-1 Clock

Figure 24-2 Testing the Digital Clock

OS
Clock

+ getSeconds()
+ getMinutes()
+ getHours()
+ tic()

MockTime
Source

Clock

Clock
Driver

ClockDriverTest

TimeSource
«interface»

DigitalClock
MockTime

Sink

TimeSink
«interface»

298
www.EBooksWorld.ir

The Digital Clock

The ClockDriverTest object will connect the ClockDriver to the two mock objects through the
TimeSource and TimeSink interfaces. It will then check each of the mock objects to ensure that the
ClockDriver manages to move the time from the source to the sink. If necessary, the ClockDriverTest will
also ensure that efficiency is being conserved.

I think it’s interesting that we have added interfaces to the design simply as a result of considering how to
test it. In order to test a module, you have to be able to isolate it from the other modules in the system, just as we
have isolated the ClockDriver from the Clock and DigitalClock. Considering tests first helps us to minimize
the coupling in our designs.

OK, how does the ClockDriver work? Clearly, in order to be efficient, the ClockDriver must detect
when the time in the TimeSource object has changed. Then, and only then, should it move the time to the
TimeSink object. How can the ClockDriver know when the time has changed? It could poll the TimeSource,
but that simply recreates the CPU hog problem.

The simplest way for the ClockDriver to know when the time has changed is for the Clock object to tell
it. We could pass the ClockDriver to the Clock through the TimeSource interface and then, when the time
changes, the Clock can update the ClockDriver. The ClockDriver will, in turn, set the time on the
ClockSink. (See Figure 24-3.)

Notice the dependency from the TimeSource to the ClockDriver. It is there because the argument to the
setDriver method is a ClockDriver. I’m not very happy with this, since it implies that TimeSource objects
must use ClockDriver objects in every case. However, I’ll defer doing anything about the dependency until I get
this program working.

Listing 24-1 shows the test case for the ClockDriver. Notice that it creates a ClockDriver and binds a
MockTimeSource and a MockTimeSink to it. Then it sets the time in the source and expects the time to magi-
cally arrive at the sink. The rest of the code is shown in Listings 24-2 through 24-6.

Listing 24-1

ClockDriverTest.java

import junit.framework.*;

public class ClockDriverTest extends TestCase
{
 public ClockDriverTest(String name)

Figure 24-3 Getting the TimeSource to update the ClockDriver

TimeSource
«interface»

«parameter»
TimeSink

TestClockDriver

Clock
Driver

«interface»

+ setDriver

+ update()

MockTime
Source

+ setTime
MockTimeSink

299
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

 {
 super(name);
 }

 public void testTimeChange()
 {
 MockTimeSource source = new MockTimeSource();
 MockTimeSink sink = new MockTimeSink();
 ClockDriver driver = new ClockDriver(source,sink);
 source.setTime(3,4,5);
 assertEquals(3, sink.getHours());
 assertEquals(4, sink.getMinutes());
 assertEquals(5, sink.getSeconds());

 source.setTime(7,8,9);
 assertEquals(7, sink.getHours());
 assertEquals(8, sink.getMinutes());
 assertEquals(9, sink.getSeconds());
 }
}

Listing 24-2

TimeSource.java

public interface TimeSource
{
 public void setDriver(ClockDriver driver);
}

Listing 24-3

TimeSink.java

public interface TimeSink
{
 public void setTime(int hours, int minutes, int seconds);
}

Listing 24-4

ClockDriver.java

public class ClockDriver
{
 private TimeSink itsSink;

 public ClockDriver(TimeSource source, TimeSink sink)
 {
 source.setDriver(this);
 itsSink = sink;
 }

 public void update(int hours, int minutes, int seconds)
 {
 itsSink.setTime(hours, minutes, seconds);
 }
}

300
www.EBooksWorld.ir

The Digital Clock

Listing 24-5

MockTimeSource.java

public class MockTimeSource implements TimeSource
{
 private ClockDriver itsDriver;

 public void setTime(int hours, int minutes, int seconds)
 {
 itsDriver.update(hours, minutes, seconds);
 }

 public void setDriver(ClockDriver driver)
 {
 itsDriver = driver;
 }
}

Listing 24-6

MockTimeSink.java

public class MockTimeSink implements TimeSink
{
 private int itsHours;
 private int itsMinutes;
 private int itsSeconds;

 public int getSeconds()
 {
 return itsSeconds;
 }

 public int getMinutes()
 {
 return itsMinutes;
 }

 public int getHours()
 {
 return itsHours;
 }

 public void setTime(int hours, int minutes, int seconds)
 {
 itsHours = hours;
 itsMinutes = minutes;
 itsSeconds = seconds;
 }
}

OK, now that it works, I can think about cleaning it up. I don’t like the dependency from TimeSource to
ClockDriver because I want the TimeSource interface to be usable by anybody, not just ClockDriver objects.
We can fix this by creating an interface that TimeSource can use and that ClockDriver can implement. We’ll
call this interface ClockObserver. See Listings 24-7 through 24-10. The code in bold has changed.

301
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

Listing 24-7

ClockObserver.java

public interface ClockObserver
{
 public void update(int hours, int minutes, int seconds);
}

Listing 24-8

ClockDriver.java

public class ClockDriver implements ClockObserver
{
 private TimeSink itsSink;

 public ClockDriver(TimeSource source, TimeSink sink)
 {
 source.setObserver(this);
 itsSink = sink;
 }

 public void update(int hours, int minutes, int seconds)
 {
 itsSink.setTime(hours, minutes, seconds);
 }
}

Listing 24-9

TimeSource.java

public interface TimeSource
{
 public void setObserver(ClockObserver observer);
}

Figure 24-4 Breaking the depency of TimeSource upon ClockDriver

TimeSource
«interface»

TimeSink

TestClockDriver

Clock
Driver

«interface»

+ setObserver

ClockObserver
«interface»

+ update()

+ update()

MockTime
Source

+ setTime

MockTimeSink

302
www.EBooksWorld.ir

The Digital Clock

Listing 24-10

MockTimeSource.java

public class MockTimeSource implements TimeSource
{
 private ClockObserver itsObserver;

 public void setTime(int hours, int minutes, int seconds)
 {
 itsObserver.update(hours, minutes, seconds);
 }

 public void setObserver(ClockObserver observer)
 {
 itsObserver = observer;
 }
}

This is better. Now anybody can make use of TimeSource. All they have to do is implement ClockObserver
and call SetObserver, passing themselves in as the argument.

I’d like to be able to have more than one TimeSink getting the time. One might implement a digital clock.
Another might be used to supply the time to a reminder service. Still another might start my nightly backup. In
short, I’d like a single TimeSource to be able to supply the time to multiple TimeSink objects.

So I’ll change the constructor of the ClockDriver to take just the TimeSource and then add a method
named addTimeSink that allows you to add TimeSink instances any time you want.

The thing I don’t like about this is that I now have two indirections. I have to tell the TimeSource who the
ClockObserver is by calling setObserver, and I also have to tell the ClockDriver who the TimeSink
instances are. Is this double indirection really necessary?

Looking at ClockObserver and TimeSink, I see that they both have the setTime method. It looks like
TimeSink could implement ClockObserver. If I did this, then my test program could create a MockTimeSink
and call setObserver on the TimeSource. I could get rid of the ClockDriver (and TimeSink) altogether!
Listing 24-11 shows the changes to ClockDriverTest.

Listing 24-11

ClockDriverTest.java

import junit.framework.*;

public class ClockDriverTest extends TestCase
{
 public ClockDriverTest(String name)
 {
 super(name);
 }

 public void testTimeChange()
 {
 MockTimeSource source = new MockTimeSource();
 MockTimeSink sink = new MockTimeSink();
 source.setObserver(sink);

 source.setTime(3,4,5);
 assertEquals(3, sink.getHours());

303
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

 assertEquals(4, sink.getMinutes());
 assertEquals(5, sink.getSeconds());

 source.setTime(7,8,9);
 assertEquals(7, sink.getHours());
 assertEquals(8, sink.getMinutes());
 assertEquals(9, sink.getSeconds());
 }
}

This means that MockTimeSink should implement ClockObserver rather than TimeSink. See Listing
24-12. These changes work fine. Why did I think I needed a ClockDriver in the first place? Figure 24-5 shows
the UML.

Listing 24-12

MockTimeSink.java

public class MockTimeSink implements ClockObserver
{
 private int itsHours;
 private int itsMinutes;
 private int itsSeconds;

 public int getSeconds()
 {
 return itsSeconds;
 }

 public int getMinutes()
 {
 return itsMinutes;
 }

 public int getHours()
 {
 return itsHours;
 }

 public void update(int hours, int minutes, int seconds)
 {
 itsHours = hours;
 itsMinutes = minutes;
 itsSeconds = seconds;
 }
}

Clearly this is much simpler.
OK, now we can handle multiple TimeSink objects by changing the setObserver function to register-

Observer and by making sure that all the registered ClockObserver instances are held in a list and updated
appropriately. This requires another change to the test program. Listing 24-13 shows the changes. I also did a little
refactoring of the test program to make it smaller and easier to read.

304
www.EBooksWorld.ir

The Digital Clock

Listing 24-13

ClockDriverTest.java

import junit.framework.*;

public class ClockDriverTest extends TestCase
{
 private MockTimeSource source;
 private MockTimeSink sink;

 public ClockDriverTest(String name)
 {
 super(name);
 }

 public void setUp()
 {
 source = new MockTimeSource();
 sink = new MockTimeSink();
 source.registerObserver(sink);
 }

 private void assertSinkEquals(
 MockTimeSink sink, int hours, int minutes, int seconds)
 {
 assertEquals(hours, sink.getHours());
 assertEquals(minutes, sink.getMinutes());
 assertEquals(seconds, sink.getSeconds());
 }

 public void testTimeChange()
 {
 source.setTime(3,4,5);
 assertSinkEquals(sink, 3,4,5);

 source.setTime(7,8,9);
 assertSinkEquals(sink, 7,8,9);
 }

Figure 24-5 Removing ClockDriver and TimeSink

TimeSource
«interface»

TestClockDriver

+ setObserver

MockTime
Source

+ setTime
MockTimeSink

ClockObserver
«interface»

+ update()

305
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

 public void testMultipleSinks()
 {
 MockTimeSink sink2 = new MockTimeSink();
 source.registerObserver(sink2);

 source.setTime(12,13,14);
 assertSinkEquals(sink, 12,13,14);
 assertSinkEquals(sink2, 12,13,14);
 }
}

The change needed to make this work is pretty simple. We change MockTimeSource to hold all registered
observers in a Vector. Then, when the time changes, we iterate through the Vector and call update on all the
registered ClockObservers. Listings 24-14 and 24-15 show the changes. Figure 24-6 shows the corresponding
UML.

Listing 24-14

TimeSource.java

public interface TimeSource
{
 public void registerObserver(ClockObserver observer);
}

Listing 24-15

MockTimeSource.java

import java.util.*;

public class MockTimeSource implements TimeSource
{
 private Vector itsObservers = new Vector();

 public void setTime(int hours, int minutes, int seconds)
 {
 Iterator i = itsObservers.iterator();
 while (i.hasNext())
 {
 ClockObserver observer = (ClockObserver) i.next();
 observer.update(hours, minutes, seconds);

 }

 public void registerObserver(ClockObserver observer)
 {
 itsObservers.add(observer);
 }
}

This is pretty nice, but I don’t like the fact that the MockTimeSource has to deal with the registration and
update. It implies that the Clock and every other derivative of TimeSource will have to duplicate that registration
and update code. I don’t think Clock should have to deal with registration and update. I also don’t like the idea of
duplicate code. So I’d like to move all that stuff into the TimeSource. Of course, this means that TimeSource

306
www.EBooksWorld.ir

The Digital Clock

will have to change from an interface to a class. It also means that MockTimeSource will shrink to near nothing.
Listings 24-16 and 24-17 and Figure 24-7 show the changes.

Listing 24-16

TimeSource.java

import java.util.*;

public class TimeSource
{
 private Vector itsObservers = new Vector();

 protected void notify(int hours, int minutes, int seconds)
 {
 Iterator i = itsObservers.iterator();
 while (i.hasNext())
 {
 ClockObserver observer = (ClockObserver) i.next();
 observer.update(hours, minutes, seconds);
 }
 }

 public void registerObserver(ClockObserver observer)
 {
 itsObservers.add(observer);
 }
}

Listing 24-17

MockTimeSource.java

public class MockTimeSource extends TimeSource
{
 public void setTime(int hours, int minutes, int seconds)
 {
 notify(hours, minutes, seconds);
 }
}

Figure 24-6 Handing multiple TimeSink objects

+ setTime

MockTime
Source

TestClockDriver

MockTimeSink

+ registerObserver + update()
0..*

ClockObserver
«interface»

TimeSource
«interface»

307
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

This is pretty cool. Now, anybody can derive from TimeSource. All they have to do to get the observers
updated is to call notify. But there is still something I don’t like about it. MockTimeSource inherits directly
from TimeSource. This means that Clock must also derive from TimeSource. Why should Clock have to
depend upon registration and update? Clock is just a class that knows about time. Making it depend upon Time-
Source seems necessary and undesirable.

I know how I’d solve this in C++. I’d create a subclass of both TimeSource and Clock called
ObservableClock. I’d override tic and setTime in ObservableClock to call tic or setTime in Clock and
then call notify in TimeSource. See Listing 24-18 and Figure 24-8.

Listing 24-18

ObservableClock.cc (C++)

class ObservableClock : public Clock, public TimeSource
{
 public:
 virtual void tic()
 {
 Clock::tic();
 TimeSource::notify(getHours(), getMinutes(), getSeconds());
 }

 virtual void setTime(int hours, int minutes, int seconds)
 {
 Clock::setTime(hours, minutes, seconds);
 TimeSource::notify(hours, minutes, seconds);
 }
};

Unfortunately, we don’t have this option in Java because the language can’t deal with multiple inheritance of
classes. So, in Java we either have to leave things as they are or use a delegation hack. The delegation hack is
shown in Listings 24-19 through 24-21 and Figure 24-9.

Figure 24-7 Moving registration and update into TimeSource

+ setTime

TestClockDriver

MockTimeSink
MockTime

Source

+ registerObserver
notify

TimeSource

+ update()
0..*

ClockObserver
«interface»

308
www.EBooksWorld.ir

The Digital Clock

Listing 24-19

TimeSource.java

public interface TimeSource
{
 public void registerObserver(ClockObserver observer);
}

Listing 24-20

TimeSourceImplementation.java

import java.util.*;

public class TimeSourceImplementation
{
 private Vector itsObservers = new Vector();

 public void notify(int hours, int minutes, int seconds)
 {
 Iterator i = itsObservers.iterator();
 while (i.hasNext())
 {
 ClockObserver observer = (ClockObserver) i.next();
 observer.update(hours, minutes, seconds);
 }
 }

 public void registerObserver(ClockObserver observer)
 {
 itsObservers.add(observer);
 }
}

Listing 24-21

MockTimeSource.java

public class MockTimeSource implements TimeSource
{
 TimeSourceImplementation tsImp =
 new TimeSourceImplementation();

 public void registerObserver(ClockObserver observer)
 {
 tsImp.registerObserver(observer);
 }

Figure 24-8 Using multiple inheritance in C++ to separate Clock from TimeSource

Clock TimeSource

Observable
Clock

309
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

 public void setTime(int hours, int minutes, int seconds)
 {
 tsImp.notify(hours, minutes, seconds);
 }
}

Notice that the MockTimeSource class implements TimeSource and contains a reference to an instance of
TimeSourceImplementation. Notice also that all calls to the registerObserver method of MockTime-
Source are delegated to that TimeSourceImplementation object. So too, MockTimeSource.setTime
invokes notify on the TimeSourceImplementation instance.

This is ugly, but it has the advantage that MockTimeSource does not extend a class. This means that if we
were to create ObservableClock, it could extend Clock, implement TimeSource, and delegate to
TimeSourceImplementation. (See Figure 24-10.) This solves the problem of Clock depending upon the regis-
tration and update stuff, but at a nontrivial price.

So, let’s go back to the way things were in Figure 24-7, before we went down this rathole. We’ll simply live
with the fact that Clock has to depend upon all the registration and update stuff.

TimeSource is a stupid name for what the class does. It started out good, back in the days when we had a
ClockDriver. But things have changed an awful lot since then. We should change the name to something that
suggests registration and update. The OBSERVER pattern calls this class Subject. Ours seems to be specific to
time, so we could call it TimeSubject, but that’s not a very intuitive name. We could use the old Java moniker
Observable, but that doesn’t ring my chimes either. TimeObservable?—No.

Figure 24-9 Observer delegation hack in Java

Figure 24-10 The delegation hack for ObservableClock

TimeSource
Implementation

+ registerObserver
+ notify

TimeSource
«interface»

«delegates»

+ registerObserver

ClockObserver
«interface»

+ update()

MockTime
Source

+ setTime
MockTimeSink

TestClockDriver

TimeSource
«interface»

Clock

Observable
Clock

TimeSource
Implementation«delegates»

310
www.EBooksWorld.ir

The Digital Clock

Perhaps it is the specificity of the “push-model” observer that is the problem.2 If we change to a “pull
model” we could make the class generic. Then we could change the name of TimeSource to Subject, and every-
body familiar with the OBSERVER pattern would know what it meant.

This is not a bad option. Rather than pass the time in the notify and update methods, we can have the
TimeSink ask the MockTimeSource for the time. We don’t want the MockTimeSink to know about the
MockTimeSource, so we’ll create an interface that the MockTimeSink can use to get the time. The
MockTimeSource (and the Clock) will implement this interface. We’ll call this interface—er—TimeSource.

The final state of the code and UML are in Figure 24-11 and Listings 24-22 through 24-27.

Listing 24-22

ObserverTest.java

import junit.framework.*;

public class ObserverTest extends TestCase
{
 private MockTimeSource source;
 private MockTimeSink sink;

 public ObserverTest(String name)
 {
 super(name);
 }

 public void setUp()
 {
 source = new MockTimeSource();
 sink = new MockTimeSink(source);
 source.registerObserver(sinkprivate void assertSinkEquals(
 }

2. “Push-model” observers push data from the subject to the observer by passing it in the notify and update methods. “Pull-model”
observers pass nothing in the notify and update methods, and they depend upon the observing object to query the observed object
upon receiving an update. See [GOF95].

Figure 24-11 Final version of the Observer applied to MockTimeSource and MockTimeSink

Subject

+ registerObserver
notifyObservers

TimeSource
«interface»

+ getHours()
+ getMinutes()
+ getSeconds()

Observer
«interface»

+ update()

0..*

MockTime
Source

+ setTime
MockTimeSink

TestClockDriver

311
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

 private void assertSinkEquals(
 MockTimeSink sink, int hours, int minutes, int seconds)
 {
 assertEquals(hours, sink.getHours());
 assertEquals(minutes, sink.getMinutes());
 assertEquals(seconds, sink.getSeconds());
 }

 public void testTimeChange()
 {
 source.setTime(3,4,5);
 assertSinkEquals(sink, 3,4,5);

 source.setTime(7,8,9);
 assertSinkEquals(sink, 7,8,9);
 }

 public void testMultipleSinks()
 {
 MockTimeSink sink2 = new MockTimeSink(source);
 source.registerObserver(sink2);

 source.setTime(12,13,14);
 assertSinkEquals(sink, 12,13,14);
 assertSinkEquals(sink2, 12,13,14);
 }
}

Listing 24-23

Observer.java

public interface Observer
{
 public void update();
}

Listing 24-24

Subject.java

import java.util.*;

public class Subject
{
 private Vector itsObservers = new Vector();

 protected void notifyObservers()
 {
 Iterator i = itsObservers.iterator();
 while (i.hasNext())
 {
 Observer observer = (Observer) i.next();
 observer.update();
 }
 }

312
www.EBooksWorld.ir

The Digital Clock

 public void registerObserver(Observer observer)
 {
 itsObservers.add(observer);
 }
}

Listing 24-25

TimeSource.java

public interface TimeSource
{
 public int getHours();
 public int getMinutes();
 public int getSeconds();
}

Listing 24-26

MockTimeSource.java

public class MockTimeSource extends Subject
 implements TimeSource
{
 private int itsHours;
 private int itsMinutes;
 private int itsSeconds;

 public void setTime(int hours, int minutes, int seconds)
 {
 itsHours = hours;
 itsMinutes = minutes;
 itsSeconds = seconds;
 notifyObservers();
 }

 public int getHours()
 {
 return itsHours;
 }

 public int getMinutes()
 {
 return itsMinutes;
 }

 public int getSeconds()
 {
 return itsSeconds;
 }
}

Listing 24-27

MockTimeSink.java

public class MockTimeSink implements Observer
{
 private int itsHours;

313
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

 private int itsMinutes;
 private int itsSeconds;
 private TimeSource itsSource;

 public MockTimeSink(TimeSource source)
 {
 itsSource = source;
 }

 public int getSeconds()
 {
 return itsSeconds;
 }

 public int getMinutes()
 {
 return itsMinutes;
 }

 public int getHours()
 {
 return itsHours;
 }

 public void update()
 {
 itsHours = itsSource.getHours();
 itsMinutes = itsSource.getMinutes();
 itsSeconds = itsSource.getSeconds();
 }
}

Conclusion
So, we made it. We started with a design problem and, through reasonable evolution, wound up at the canonical
OBSERVER pattern. You might complain that since I knew that I wanted to arrive at the OBSERVER I simply
arranged it so that I would. I won’t deny it. But that’s not really the issue.

If you are familiar with design patterns, then when faced with a design problem, a pattern will very likely
pop into your mind. The question then is whether or not to implement that pattern directly, or to continue to evolve
the code through a series of small steps. This chapter showed what the second option is like. Rather than simply
leaping to the conclusion that the OBSERVER pattern was the best choice for the problem at hand, I continued to
resolve the issues one by one. Eventually it was pretty clear that the code was heading in the direction of
OBSERVER, so I changed the names and put the code into canonical form.

At any point during that evolution, I could have found that my problem was solved and stopped evolving. Or,
I might have found that I could solve the problem by changing course and going in a different direction.

The Use of Diagrams in this Chapter

Some of the diagrams I drew for your benefit. I thought it would be easier for you to follow what I was doing by
showing you an overview in a diagram. Had I not been trying to expose and expound, I would not have created
them. However, a few of the diagrams were created for my benefit. There were times when I just needed to stare at
the structure that I had created so I could see where to go next.

314
www.EBooksWorld.ir

The Observer Pattern

Had I not been writing a book, I would have drawn these diagrams by hand on a scrap of paper or a white-
board. I would not have taken the time to use a drawing tool. There are no circumstances that I know of where
using a drawing tool is faster than a napkin.

Having used the diagrams to help me evolve the code, I would not have kept the diagrams. In every case, the
ones I drew for myself were intermediate steps.

Is there value in keeping diagrams at this level of detail? Clearly, if you are trying to expose your reasoning,
as I am doing in this book, they come in pretty handy. But usually we are not trying to document the evolutionary
path of a few hours of coding. Usually, these diagrams are transient and are better thrown away. At this level of
detail, the code is generally good enough to act as its own documentation. At higher levels, that is not always true.

The OBSERVER Pattern
OK, so now that we’ve been through the example and evolved our code to the OBSERVER pattern, it might be inter-
esting to study just what the OBSERVER pattern is. The canonical form of OBSERVER is shown in Figure 24-12. In
this example, Clock is being observed by DigitalClock. DigitalClock registers with the Subject interface
of Clock. Clock calls the notify method of Subject whenever the time changes for any reason. The notify
method of Subject invokes the update method of each registered Observer. Thus, DigitalClock will receive
an update message whenever the time changes. It uses that opportunity to ask Clock for the time and then dis-
play it.

OBSERVER is one of those patterns that, once you understand it, you see uses for it everywhere. The indirec-
tion is very cool. You can register observers with all kinds of objects rather than writing those objects to explicitly
call you. While this indirection is a useful way to manage dependencies, it can easily be taken to extremes. Over-
use of OBSERVER tends to make systems very difficult to understand and trace.

Push-me-pull-u. There are two primary models of the OBSERVER pattern. Figure 24-13 shows the pull
model OBSERVER. It gets its name from the fact that the DigitalClock must pull the time information from the
Clock object after receiving the update message.

The advantage of the pull model is its simplicity of implementation and the fact that the Subject and
Observer classes can be standard reusable elements in a library. However, imagine that you are observing an
employee record with a thousand fields and that you have just received an update message. Which of the thou-
sand fields changed?

When update is called on the ClockObserver, the response is obvious. The ClockObserver needs to
pull the time from the Clock and display it. But when update is called on the EmployeeObserver, the response
is not so obvious. We don’t know what happened. We don’t know what to do. Perhaps the employee’s name
changed, or maybe it was his salary. Maybe he got a new boss. Or maybe his bank account changed. We need help.

This help can be given in the push-model form of the OBSERVER pattern. The structure of the push-model
observer is shown in Figure 24-13. Notice that the notify and update methods both take an argument. The argu-
ment is a hint, passed from Employee to SalaryObserver through the notify and update methods. That hint
tells SalaryObserver the kind of change the Employee record experienced.

Figure 24-12 Canonical Pull-Model OBSERVER

Subject

+ register(Observer)
notify()

Observer
«interface»

+ update()

0..*

DigitalClockClock

315
www.EBooksWorld.ir

Chapter 24 • Observer—Backing into a Pattern

The EmployeeObserverHint argument of notify and update might be an enumeration of some kind, a
string, or a more complex data structure that contains the old and new values of some field. Whatever it is, its value
is being pushed toward the observer.

Choosing between the two different OBSERVER models is simply a matter of the complexity of the observed
object. If the observed object is complex, and the observer needs a hint, then the push model is appropriate. If the
observed object is simple, then a pull model will do fine.

How OBSERVER Manages the Principles of OOD

The principle that most drives the OBSERVER pattern is the Open–Closed Principle (OCP). The motivation
for using the pattern is so that you can add new observing objects without changing the observed object. Thus the
observed object stays closed.

Looking back on Figure 24-12, it should be clear that Clock is substitutable for Subject and that
DigitalClock is substitutable for Observer. Thus, the Liskov Substitution Principle (LSP) is applied.

Observer is an abstract class, and the concrete DigitialClock depends upon it. The concrete methods of
Subject also depend upon it. Hence, the Dependency-Inversion Principle (DIP) is applied in this case. You might
think that since Subject has no abstract methods, the dependency between Clock and Subject violates the DIP.
However, Subject is a class that ought never to be instantiated. It only makes sense in the context of a derived
class. Thus, Subject is logically abstract, even though it has no abstract methods. We can enforce the abstractness
of Subject by giving it a pure virtual destructor in C++ or by making its constructors protected.

There are hints of the Interface-Segregation Principle (ISP) in Figure 24-11. The Subject and TimeSource
classes segregate the clients of the MockTimeSource, providing specialized interfaces for each of those clients.

Bibliography

1. Gamma, et al. Design Patterns. Addison–Wesley, 1995.
2. Martin, Robert C., et al. Pattern Languages of Program Design 3, Addison–Wesley, 1998.

Figure 24-13 Push-Model OBSERVER

0..*
Employee
Subject

+ Register(EmployeeObserver)
+ Notify(EmployeeObserverHint)

Employee
Observer

+ update(EmployeeObserverHint)

Salary
Observer

Employee

316
www.EBooksWorld.ir

25

ABSTRACT SERVER, ADAPTER,
and BRIDGE

Politicians are the same all over.
They promise to build a bridge even where there is no river.

—Nikita Khrushchev

In the mid-1990s, I was deeply involved with the discussions that coursed through the comp.object newsgroup.
Those of us who posted messages on that newsgroup argued furiously about different strategies of analysis and
design. At one point, we decided that a concrete example would help us evaluate each other’s position. So we
chose a very simple design problem and proceeded to present our favorite solutions.

The design problem was extraordinarily simple. We chose to design the software that ran inside a simple
table lamp. The table lamp has a switch and a light. You could ask the switch whether it was on or off, and you
could tell the light to turn on or off. A nice, simple problem.

The debate raged for months. Each person demanded that his own particular style of design was superior to
all the others. Some used a simple approach of just a switch and light object. Others thought there ought to be a
lamp object that contained the switch and the light. Still others thought that electricity should be an object. One
person actually suggested a power-cord object.

Despite the absurdity of most of those arguments, the design model is actually interesting to explore. Con-
sider Figure 25-1. We can certainly make this design work. The Switch object can poll the state of the actual
switch and can send appropriate turnOn an turnOff messages to the Light.

From Chapter 25 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

317
www.EBooksWorld.ir

Chapter 25 • Abstract Server, Adapter, and Bridge

What don’t we like about this design?
Two of our design principles are being violated by this design: the Dependency-Inversion Principle (DIP)

and the Open-Closed Principle (OCP). The violation of the DIP is easy to see, the dependency from Switch to
Light is a dependency upon a concrete class. DIP tells us to prefer dependencies on abstract classes. The violation
of OCP is a little less direct, but is more to the point. We don’t like this design because it forces us to drag a Light
along everywhere we need a Switch. Switch cannot be easily extended to control objects other than Light.

ABSTRACT SERVER

You might be thinking that you could inherit a subclass from Switch that would control something other than a
light as in Figure 25-3. But this doesn’t solve the problem because FanSwitch still inherits the dependency upon
Light. Wherever you take a FanSwitch, you’ll have to bring Light along. In any case, that particular inherit-
ance relationship also violates the DIP.

To solve the problem, we invoke one of the simplest of all design patterns: ABSTRACT SERVER. (See Figure
25-2.) By introducing an interface between the Switch and the Light, we have made it possible for Switch to
control anything that implements that interface. This immediately satisfies both the DIP and the OCP.

Who Owns the Interface?

As an interesting aside, notice that the interface is named for its client. It is called Switchable rather than
ILight. We’ve talked about this before, and we’ll probably notice it again. Interfaces belong to the client, not to
the derivative. The logical binding between the client and the interface is stronger than the logical binding between

Figure 25-1 Simple table lamp

Figure 25-2 A bad way to extended Switch

Figure 25-3 ABSTRACT SERVER solution to the Table Lamp problem

Light
Switch + turnOn

+ turnOff

Light
Switch + turnOn

+ turnOff

Fan
FanSwitch + turnOn

+ turnOff

Switch

Light

+ turnOn
+ turnOff

Switchable
«interface»

+ turnOn
+ turnOff

318
www.EBooksWorld.ir

Adapter

the interface and its derivatives. It is so strong that it makes no sense to deploy Switch without Switchable; yet
it makes perfect sense to deploy Switchable without Light. The strength of the logical bonds is at odds with the
strength of the physical bonds. Inheritance is a much stronger physical bond than association.

In the early 1990s, we used to think that the physical bond ruled. There were very reputable books that rec-
ommended that inheritance hierarchies be placed together in the same physical package. This seemed to make
sense because inheritance is such a strong physical bond. But over the last decade, we have learned that the physi-
cal strength of inheritance is misleading and that inheritance hierarchies should usually not be packaged together.
Rather, clients tend to be packaged with the interfaces they control.

This misalignment of the strength of logical and physical bonds is an artifact of statically typed languages
like C++ and Java. Dynamically typed languages, like Smalltalk, Python, and Ruby, don’t have the misalignment
because they don’t use inheritance to achieve polymorphic behavior.

Adapter
There is a problem with the design in Figure 25-3. There is a potential violation of the Single-Responsibility Prin-
ciple (SRP). We have bound together two things, Light and Switchable, that may not change for the same rea-
sons. What if we can’t add the inheritance relationship to Light? What if we purchased Light from a third party
and we don’t have the source code. Or what if there is some other class that we want a Switch to control but that
we can’t derive from Switchable? Enter the ADAPTER.1

Figure 25-4 shows how the Adapter pattern can be employed to solve the problem. The adapter derives
from Switchable and delegates to Light. This solves the problem neatly. Now we can have any object that can
be turned on or off controlled by a Switch. All we need to do is create the appropriate adapter. Indeed, the object
need not even have the same turnOn and turnOff methods that Switchable has. The adapter can be adapted to
the interface of the object.

TANSTAAFL. Adapters don’t come cheap. You need to write the new class, and you need to instantiate
the adapter and bind the adapted object to it. Then, every time you invoke the adapter, you have to pay for the time
and space required for the delegation. So clearly, you don’t want to use adapters all the time. The ABSTRACT

SERVER solution is quite appropriate for most situations. In fact, even the initial solution in Figure 25-1 is pretty
good unless you happen to know that there are other objects for Switch to control.

The Class Form of ADAPTER

The LightAdapter class in Figure 25-4 is known as an object form adapter. There is another approach known as
the class form adapter, which is shown in Figure 25-5. In this form, the adapter object inherits from both the
Switchable interface and the Light class. This form is a tiny bit more efficient than the object form and is a bit
easier to use, but at the expense of using the high coupling of inheritance.

1. We’ve seen the ADAPTER before, back in Figures 10-2 and 10-3 starting on page 118.

Figure 25-4 Solving the Table Lamp with ADAPTER

Switch
Switchable
«interface»

«delegates»

+ turnOn
+ turnOff

+ turnOn
+ turnOff

Light Adapter

+ turnOn
+ turnOff

Light

319
www.EBooksWorld.ir

Chapter 25 • Abstract Server, Adapter, and Bridge

The Modem Problem, ADAPTERs and LSP

Consider the situation in Figure 25-6. We have a large number of modem clients all making use of the Modem inter-
face. The Modem interface is implemented by several derivatives, including HayesModem, USRoboticsModem,
and EarniesModem. This is a pretty common situation. It conforms nicely to the OCP, LSP, and DIP. Modem cli-
ents are unaffected when there are new kinds of modems to deal with. Suppose this situation were to continue for
several years. Suppose that there were hundreds of modem clients all making happy use of the Modem interface.

Now suppose that our customers have given us a new requirement. There are certain kinds of modems that
don’t dial. These are called dedicated modems because they sit at both ends of a dedicated connection.2 There are
several new applications that use these dedicated modems and don’t bother to dial. We’ll call these the DedUsers.
However, our customers want all the current modem clients to be able to use these dedicated modems. They tell us
that they don’t want to have to modify the hundreds of modem client applications, so those modem clients will
simply be told to dial dummy phone numbers.

If we had our druthers, we might want to alter the design of our system as shown in Figure 25-7. We’d make
use of the ISP to split the dialling and communications functions into two separate interfaces. The old modems
would implement both interfaces, and the modem clients would use both interfaces. The DedUsers would use
nothing but the Modem interface, and the DedicatedModem would implement just the Modem interface. Unfortu-
nately this requires us to make changes to all the modem clients—something that our customers forbade.

So what do we do? We can’t separate the interfaces as we’d like, yet we must provide a way for all the
modem clients to use DedicatedModem. One possible solution is to derive DedicatedModem from Modem and to
implement the dial and hangup functions to do nothing, as follows:

Figure 25-5 Solving the Table Lamp with ADAPTER

Figure 25-6 Modem Problem

2. All modems used to be dedicated. It is only in recent geological epochs that modems took on the ability to dial. In the early Jurassic
period, you rented a breadbox-sized modem from the phone company and connected it to another modem through dedicated lines that
you also rented from the phone company (life was good for the phone company in the Jurassic). If you wanted to dial, you rented
another bread-box-sized unit called an auto dialer.

Switch
Switchable
«interface»

+ turnOn
+ turnOff

+ turnOn
+ turnOff

Light Adapter

+ turnOn
+ turnOff

Light

Hayes Modem

US Robotics
Modem

Ernie's Modem

Modem
Clients

Modem
«interface»

+ Dial
+ Hangup
+ Send
+ Receive

320
www.EBooksWorld.ir

Adapter

class DedicatedModem public : Modem
{
 public:
 virtual void dial(char phoneNumber[10]) {}
 virtual void hangup() {}
 virtual void send(char c)
 {...}
 virtual char receive()
 {...}
};

Degenerate functions are a sign that we may be violating the LSP. The users of the base class may be expect-
ing dial and hangup to significantly change the state of the modem. The degenerate implementations in
DedicatedModem may violate those expectations.

Let’s presume that the modem clients were written to expect their modems to be dormant until dial is
called and to return to dormancy when hangup is called. In other words, they don’t expect any characters to be
coming out of modems that aren’t dialled. DedicatedModem violates this expectation. It will return characters
before dial has been called, and it will continue to return them after hangup has been called. Thus, Dedicated-
Modem may crash some of the modem clients.

Now you might suggest that the problem is with the modem clients. They aren’t written very well if they
crash on unexpected input. I’d agree with that. But it’s going to be hard to convince the folks who have to maintain
the modem clients to make changes to their software because we are adding a new kind of modem. Not only does
this violate the OCP, it’s also just plain frustrating. And besides, our customer has explicitly forbidden us from
changing the modem clients.

We Can Fix this with a Kludge. We can simulate a connection status in the dial and hangup methods
of DedicatedModem. We can refuse to return characters if dial has not been called, or after hangup has been
called. If we make this change, then all the modem clients will be happy and won’t have to change. All we have to
do is convince the DedUsers to call dial and hangup. (See Figure 25-8.)

You might imagine that the folks who are building the DedUsers find this pretty frustrating. They are explic-
itly using DedicatedModem. Why should they have to call dial and hangup? However, they haven’t written
their software yet, so it’s easier to get them to do what we want.

A Tangled Web of Dependencies. Months later, when there are hundreds of DedUsers, our customers
present us with a new change. It seems that all these years our programs have not had to dial international phone

Figure 25-7 Ideal solution to the Modem Problem

Hayes Modem

Dedicated
Modem

US Robotics
Modem

Ernie's Modem

Ded Users

Modem
Clients

Dialler
«interface»

+ Dial
+ Hangup

Modem
«interface»

+ Send
+ Receive

321
www.EBooksWorld.ir

Chapter 25 • Abstract Server, Adapter, and Bridge

numbers. That’s why they got away with the char[10] in dial. Now, however, our customers want us to be able
to dial phone numbers of arbitrary length. They have a need to make international calls, credit-card calls, PIN-
identified calls, etc.

Clearly all the modem clients must be changed. They were written to expect char[10] for the phone num-
ber. Our customers authorize this because they have no choice, and hordes of programmers are put to the task. Just
as clearly, the classes in the modem hierarchy must change to accommodate the new phone number size. Our little
team can deal with that. Unfortunately, we now have to go to the authors of the DedUsers and tell them that they
have to change their code! You might imagine how happy they’ll be about that. They aren’t calling dial because
they need to. They are calling dial because we told them they have to. And now they are going through an expen-
sive maintenance job because they did what we told them to do.

This is the kind of nasty dependency tangle that many projects find themselves in. A kludge in one part of the
system creates a nasty thread of dependency that eventually causes problems in what ought to be a completely
unrelated part of the system.

ADAPTER to the Rescue. We could have prevented this fiasco by using an ADAPTER to solve the initial
problem as shown in Figure 25-9. In this case, DedicatedModem does not inherit from Modem. The modem clients
use DedicatedModem indirectly through the DedicatedModemAdapter. This adapter implements dial and
hangup to simulate the connection state. It delegates send and recieve calls to the DedicatedModem.

Note that this eliminates all the difficulties we had before. Modem clients are seeing the connection behavior
that they expect, and DedUsers don’t have to fiddle with dial or hangup. When the phone number requirement
changes, the DedUsers will be unaffected. Thus, we have fixed both the LSP and OCP violations by putting the
adapter in place.

Note that the kludge still exists. The adapter is still simulating connection state. You may think this is ugly,
and I’d certainly agree with you. However, notice that all the dependencies point away from the adapter. The
kludge is isolated from the system, tucked away in an adapter that barely anybody knows about. The only hard
dependency upon that adapter will likely be in the implementation of some factory somewhere.3

BRIDGE

There is another way to look at this problem. The need for a dedicated modem has added a new degree of freedom
to the Modem type hierarchy. When the Modem type was initially conceived, it was simply an interface for a set of

Figure 25-8 Solving the Modem Problem by kluding DedicateModem to simulate connection state

3. See Chapter 21, FACTORY.

Hayes Modem

US Robotics
Modem

Ernie's Modem

Modem
ClientsModem

«interface»

+ Dial
+ Hangup
+ Send
+ Receive

Dedicated
Modem

+ Dial
+ Hangup
+ Send
+ Receive

DedUser

Dial and Hangup
are implemented to
simulate connection
state.

322
www.EBooksWorld.ir

Bridge

different hardware devices. Thus we had HayesModem, USRModem, and ErniesModem deriving from the base
Modem class. Now, however, it appears that there is another way to cut at the Modem hierarchy. We could have
DialModem and DedicatedModem deriving from Modem.

Merging these two independent hierarchies can be done as shown in Figure 25-10. Each of the leaves of the
type hierarchy puts either a dialup or dedicated behavior onto the hardware it controls. A DedicatedHayesModem
object controls a Hayes modem in a dedicated context.

This is not an ideal structure. Every time we add a new piece of hardware, we must create two new classes—
one for the dedicated case and one for the dialup case. Every time we add a new connection type, we have to create
three new classes, one for each of the different pieces of hardware. If these two degrees of freedom are at all vola-
tile, we could wind up with a large number of derived classes before too long.

The BRIDGE pattern often helps in situations where a type hierarchy has more than one degree of freedom.
Rather than merge the hierarchies, we can separate them and tie them together with a bridge.

Figure 25-11 shows the structure. We split the modem hierarchy into two hierarchies. One represents the
connection method, and the other represents the hardware.

Modem users continue to use the Modem interface. ModemConnectionController implements the
Modem interface. The derivatives of ModemConnectionController control the connection mechanism.

Figure 25-9 Solving the Modem Problem with the ADAPTER

Figure 25-10 Solving the Modem Problem by merging type hierarchies

Hayes Modem

US Robotics
Modem

Ernie's Modem

Modem
Clients

Modem
«interface»

+ Dial
+ Hangup
+ Send
+ Receive

Dedicated
Modem
Adapter

Dial and Hangup are implemented
to simulate connection state. Send
and Receive are delegated to
DedicatedModem.

Dedicated
Modem

+ Send
+ Receive

«delegates»

DedUser

Modem

DialModem
Dedicated

Modem

Hayes
Dial

Modem

USR
Dial

Modem

Ernies
Dial

Modem

Hayes
Dedicated

Modem

USR
Dedicated

Modem

Ernies
Dedicated

Modem

323
www.EBooksWorld.ir

Chapter 25 • Abstract Server, Adapter, and Bridge

DialModemController simply passes the dial and hangup method to dialImp and hangImp in the Modem-
ConnectionController base class. Those methods then delegate to the ModemImplementation class where
they are deployed to the appropriate hardware controller. DedModemController implements dial and hangup
to simulate the connection state. It passes send and receive to sendImp and receiveImp, which are then dele-
gated to the ModemImplementation hierarchy as before.

Note that the four imp functions in the ModemConnectionController base class are protected. This is
because they are strictly to be used by derivatives of ModemConnectionController. No one else should be call-
ing them.

This structure is complex, but interesting. We are able to create it without affecting the modem users, and yet
it allows us to completely separate the connection policies from the hardware implementation. Each derivative of
ModemConnectionController represents a new connection policy. That policy can use sendImp, receiveImp,
dialImp, and hangImp to implement that policy. New imp functions could be created without affecting the
users. The ISP could be employed to add new interfaces to the connection controller classes. This could create a
migration path that the modem clients could slowly follow toward an API that is higher level than dial and
hangup.

Conclusion
One might be tempted to suggest that the real problem with the Modem scenario is that the original designers got
the design wrong. They should have known that connection and communication were separate concepts. Had they
done a little more analysis, they would have found this and corrected it. So it is tempting to blame the problem on
insufficient analysis.

Figure 25-11 BRIDGE solution to the Modem Problem

Modem
«interface»

+ Dial
+ Hangup
+ Send
+ Receive

Modem
Implementation

«interface»

+ Dial
+ Hangup
+ Send
+ Receive

Dedicated
Modem

«interface»

+ Send
+ Receive

Ded Modem
Controller

+ Dial
+ Hangup
+ Send
+ Receive

DialImp
HangImp
SendImp
ReceiveImp
+ Dial
+ Hangup
+ Send
+ Receive

Dial Modem
Controller

+ Dial
+ Hangup
+ Send
+ Receive

Modem
Clients

Hayes Modem

US Robotics
Modem

Ernie's Modem

DedUser

Imps delegate to
corresponding methods
of ModemImplementation

All methods
delegate to their
respective imps.

Dial and Hangup are
implemented to simulate
connection state. Send
and Receive delegate to
their respective imps.

«delegates»

ModemConnection
Controller

{abstract}

324
www.EBooksWorld.ir

Conclusion

Poppycock! There is no such thing as enough analysis. No matter how much time you spend trying to figure
out the perfect software structure, you will always find that the customer will introduce a change that violates that
structure.

There is no escape from this. There are no perfect structures. There are only structures that try to balance the
current costs and benefits. Over time those structures must change as the requirements of the system change. The
trick to managing that change is to keep the system as simple and flexible as possible.

The ADAPTER solution is simple and direct. It keeps all the dependencies pointing in the right direction, and
it’s very simple to implement. The BRIDGE solution is quite a bit more complex. I would not suggest embarking
down that road until you had very strong evidence that you needed to completely separate the connection and com-
munication policies and that you needed to add new connection policies.

The lesson here, as always, is that a pattern is something that comes with both costs and benefits. You should
find yourself using the ones that best fit the problem at hand.

Bibliography

1. Gamma, et al. Design Patterns, Reading, MA: Addison–Wesley, 1995.

325
www.EBooksWorld.ir

326
www.EBooksWorld.ir

26

PROXY and STAIRWAY TO HEAVEN:
Managing Third Party APIs

Does anybody remember laughter?

—Robert Plant, The Song Remains the Same

There are many barriers in software systems. When we move data from our program into the database, we are
crossing the database barrier. When we send a message from one computer to another, we are crossing the network
barrier.

Crossing these barriers can be complicated. If we aren’t careful, our software will be more about the barriers
than about the problem to be solved. The patterns in this chapter help us cross such barriers while keeping the pro-
gram centered on the problem to be solved.

PROXY

Imagine that we are writing a shopping-cart system for a Web site. Such a system might have objects for the cus-
tomer, the order (the cart), and the products in the order. Figure 26-1 shows a possible structure. This structure is
simplistic, but will serve for our purposes.

From Chapter 26 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

327
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

If we consider the problem of adding a new item to an order, we might come up with the code in Listing 26-1.
The addItem method of class Order simply creates a new Item holding the appropriate Product and quantity. It
then adds that Item to its internal Vector of Items.

Listing 26-1

Adding an item to the Object Model.

public class Order
{
 private Vector itsItems = new Vector();
 public void addItem(Product p, int qty)
 {
 Item item = new Item(p, qty);
 itsItems.add(item);
 }
}

Now imagine that these objects represent data that are kept in a relational database. Figure 26-2 shows the
tables and keys that might represent the objects. To find the orders for a given customer, you find all orders that
have the customer’s cusid. To find all the items in a given order, you find the items that have the order’s orderId.
To find the products referenced by the items, you use the product’s sku.

If we want to add an item row for a particular order, we’d use something like Listing 26-2. This code makes
JDBC calls to directly manipulate the relational-data model.

Figure 26-1 Simple shopping cart object model

Figure 26-2 Shopping Card Relational Data Model

0..*

0..*

- name
- address
- billingInformation

Customer

- quantity

Item - name
- price
- sku

Product

- date
- status

Order

Customer

- cusid
- name
- address
- billingInformation

Order

- orderld
- cusid
- date
- status

Item

- orderld
- quantity

Product

- sku
- name
- price

cusid

sku

orderld

328
www.EBooksWorld.ir

Proxy

Listing 26-2

Adding an item to the relational model.

public class AddItemTransaction extends Transaction
{
 public void addItem(int orderId, String sku, int qty)
 {
 Statement s = itsConnection.CreateStatement();
 s.executeUpdate("insert into items values(" +
 orderId + "," + sku + "," +
 qty + ")");
 }
}

These two code snippets are very different, and yet they perform the same logical function. They both con-
nect an item to an order. The first ignores the existence of a database, and the second glories in it.

Clearly the shopping cart program is all about orders, items, and products. Unfortunately, if we use the code
in Listing 26-2, we make it about SQL statements, database connections, and piecing together query strings. This
is a significant violation of the SRP and possibly the CCP. Listing 26-2 mixes together two concepts that change
for different reasons. It mixes the concept of the items and orders with the concept of relational schemas and SQL.
If either concept must change for any reason, the other concept will be affected. Listing 26-2 also violates the DIP
since the policy of the program depends upon the details of the storage mechanism.

The PROXY pattern is a way to cure these ills. To explore this, let’s set up a test program that demonstrates
the behavior of creating an order and calculating the total price. The salient part of this program is shown in
Listing 26-3.

Listing 26-3

Test program creates order and verifies calculation of price.

public void testOrderPrice()
 {
 Order o = new Order("Bob");
 Product toothpaste = new Product("Toothpaste", 129);
 o.addItem(toothpaste, 1);
 assertEquals(129, o.total());
 Product mouthwash = new Product("Mouthwash", 342);
 o.addItem(mouthwash, 2);
 assertEquals(813, o.total());
 }

The simple code that passes this test is shown in Listings 26-4 through 26-6. It makes use of the simple
object model in Figure 26-1. It does not assume that there is a database anywhere. It is also incomplete in many
ways. It is just enough code to get the test to pass.

Listing 26-4

order.java

public class Order
{
 private Vector itsItems = new Vector();

329
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

 public Order(String cusid)
 {
 }

 public void addItem(Product p, int qty)
 {
 Item item = new Item(p,qty);
 itsItems.add(item);
 }

 public int total()
 {
 int total = 0;
 for (int i = 0; i < itsItems.size(); i++)
 {
 Item item = (Item) itsItems.elementAt(i);
 Product p = item.getProduct();
 int qty = item.getQuantity();
 total += p.getPrice() * qty;
 }
 return total;
 }
}

Listing 26-5

product.java

public class Product
{
 private int itsPrice;

 public Product(String name, int price)
 {
 itsPrice = price;
 }

 public int getPrice()
 {
 return itsPrice;
 }
}

Listing 26-6

item.java

public class Item
{
 private Product itsProduct;
 private int itsQuantity;

 public Item(Product p, int qty)
 {
 itsProduct = p;
 itsQuantity = qty;
 }

330
www.EBooksWorld.ir

Proxy

 public Product getProduct()
 {
 return itsProduct;
 }

 public int getQuantity()
 {
 return itsQuantity;
 }
}

Figures 26-3 and 26-4 show how the PROXY pattern works. Each object that is to be proxied is split into
three parts. The first is an interface that declares all the methods that clients need to invoke. The second is a class
that implements those methods without knowledge of the database. The third is the proxy that knows about the
database.

Consider the Product class. We have proxied it by replacing it with an interface. This interface has all the
same methods that Product has. The ProductImplementation class implements the interface almost exactly
as before. The ProductDBProxy implements all the methods of Product to fetch the product from the database,
create an instance of ProductImplementation, and then delegate the message to it.

The sequence diagram in Figure 26-4 shows how this works. The client sends the getPrice message to
what it thinks is a Product, but what is really a ProductDBProxy. The ProductDBProxy fetches the Product-
Implementation from the database. It then delegates the getPrice method to it.

Neither the client nor the ProductImplementation knows that this has happened. The database has been
inserted into the application without either party knowing about it. That’s the beauty of the PROXY pattern. In
theory, it can be inserted in between two collaborating objects without those objects having to know about it. Thus,
it can be used to cross a barrier like a database or a network without either of the participants knowing about it.

In reality, using proxies is nontrivial. To get an idea what some of the problems are, let’s try to add the
PROXY pattern to the simple shopping cart application.

Figure 26-3 PROXY static model

Figure 26-4 PROXY dynamic model

Product
DB Proxy

DB

Product
«interface»

«delegates» Product
Implementation

Product
DB Proxy

Product
Implementation

DB

getPrice()
retrieveProduct(sku)

price
Product

price

getPrice()

331
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

Proxifying the Shopping Cart

The simplest Proxy to create is for the Product class. For our purposes, the product table represents a simple dic-
tionary. It will be loaded in one place with all the products. There is no other manipulation of this table, and that
makes the proxies relatively trivial.

To get started, we need a simple database utility that stores and retrieves product data. The proxy will use this
interface to manipulate the database. Listing 26-7 shows the test program for what I have in mind. Listings 26-8 and
26-9 make that test pass.

Listing 26-7

DBTest.java

import junit.framework.*;
import junit.swingui.TestRunner;

public class DBTest extends TestCase
{
 public static void main(String[] args)
 {
 TestRunner.main(new String[]{"DBTest"});
 }

 public DBTest(String name)
 {
 super(name);
 }

 public void setUp() throws Exception
 {
 DB.init();
 }

 public void tearDown() throws Exception
 {
 DB.close();
 }

 public void testStoreProduct() throws Exception
 {
 ProductData storedProduct = new ProductData();
 storedProduct.name = "MyProduct";
 storedProduct.price = 1234;
 storedProduct.sku = "999";
 DB.store(storedProduct);
 ProductData retrievedProduct = DB.getProductData("999");
 DB.deleteProductData("999");
 assertEquals(storedProduct, retrievedProduct);
 }
}

Listing 26-8

ProductData.java

public class ProductData
{
 public String name;

332
www.EBooksWorld.ir

Proxy

 public int price;
 public String sku;

 public ProductData()
 {
 }

 public ProductData(String name, int price, String sku)
 {
 this.name = name;
 this.price = price;
 this.sku = sku;
 }

 public boolean equals(Object o)
 {
 ProductData pd = (ProductData)o;
 return name.equals(pd.name) &&
 sku.equals(pd.sku) &&
 price==pd.price;
 }
}

Listing 26-9

DB.java

import java.sql.*;

public class DB
{
 private static Connection con;

 public static void init() throws Exception
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 con = DriverManager.getConnection(
 "jdbc:odbc:PPP Shopping Cart");
 }

 public static void store(ProductData pd) throws Exception
 {
 PreparedStatement s = buildInsertionStatement(pd);
 executeStatement(s);
 }

 private static PreparedStatement
 buildInsertionStatement(ProductData pd) throws SQLException
 {
 PreparedStatement s = con.prepareStatement(
 "INSERT into Products VALUES (?, ?, ?)");
 s.setString(1, pd.sku);
 s.setString(2, pd.name);
 s.setInt(3, pd.price);
 return s;
 }

333
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

 public static ProductData getProductData(String sku) throws Exception

 {

 PreparedStatement s = buildProductQueryStatement(sku);

 ResultSet rs = executeQueryStatement(s);

 ProductData pd = extractProductDataFromResultSet(rs);

 rs.close();

 s.close();

 return pd;

 }

 private static PreparedStatement

 buildProductQueryStatement(String sku) throws SQLException

 {

 PreparedStatement s = con.prepareStatement(

 "SELECT * FROM Products WHERE sku = ?;");

 s.setString(1, sku);

 return s;

 }

 private static ProductData

 extractProductDataFromResultSet(ResultSet rs) throws SQLException

 {

 ProductData pd = new ProductData();

 pd.sku = rs.getString(1);

 pd.name = rs.getString(2);

 pd.price = rs.getInt(3);

 return pd;

 }

 public static void deleteProductData(String sku) throws Exception

 {

 executeStatement(buildProductDeleteStatement(sku));

 }

 private static PreparedStatement

 buildProductDeleteStatement(String sku) throws SQLException

 {

 PreparedStatement s = con.prepareStatement(

 "DELETE from Products where sku = ?");

 s.setString(1, sku);

 return s;

 }

 private static void executeStatement(PreparedStatement s) throws SQLException

 {

 s.execute();

 s.close();

 }

 private static ResultSet

 executeQueryStatement(PreparedStatement s)

334
www.EBooksWorld.ir

Proxy

 throws SQLException
 {
 ResultSet rs = s.executeQuery();
 rs.next();
 return rs;
 }

 public static void close() throws Exception
 {
 con.close();
 }
}

The next step in implementing the proxy is to write a test that shows how it works. This test adds a product
to the database. It then creates a ProductProxy with the sku of the stored product and attempts to use the acces-
sors of Product to acquire the data from the proxy. (See Listing 26-10.)

Listing 26-10

ProxyTest.java

import junit.framework.*;
import junit.swingui.TestRunner;

public class ProxyTest extends TestCase
{
 public static void main(String[] args)
 {
 TestRunner.main(new String[]{"ProxyTest"});
 }

 public ProxyTest(String name)
 {
 super(name);
 }

 public void setUp() throws Exception
 {
 DB.init();
 ProductData pd = new ProductData();
 pd.sku = "ProxyTest1";
 pd.name = "ProxyTestName1";
 pd.price = 456;
 DB.store(pd);
 }

 public void tearDown() throws Exception
 {
 DB.deleteProductData("ProxyTest1");
 DB.close();
 }

 public void testProductProxy() throws Exception
 {
 Product p = new ProductProxy("ProxyTest1");
 assertEquals(456, p.getPrice());

335
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

 assertEquals("ProxyTestName1", p.getName());
 assertEquals("ProxyTest1", p.getSku());
 }
}

In order to make this work, we have to separate the interface of Product from its implementation. So I
changed Product to an interface and created ProductImp to implement it. (See Listings 26-11 and 26-12.)

Notice that I have added exceptions to the Product interface. This is because I was writing ProductProxy
(Listing 26-13) at the same time that I was writing Product, ProductImp, and ProxyTest. I implemented them
all one accessor at a time. As we will see, the ProductProxy class invokes the database, which throws excep-
tions. I did not want those exceptions to be caught and hidden by the proxy, so I decided to let them escape from
the interface.

Listing 26-11

Product.java

public interface Product
{
 public int getPrice() throws Exception;
 public String getName() throws Exception;
 public String getSku() throws Exception;
}

Listing 26-12

ProductImp.java

public class ProductImp implements Product
{
 private int itsPrice;
 private String itsName;
 private String itsSku;

 public ProductImp(String sku, String name, int price)
 {
 itsPrice = price;
 itsName = name;
 itsSku = sku;
 }

 public int getPrice()
 {
 return itsPrice;
 }

 public String getName()
 {
 return itsName;
 }

 public String getSku()
 {
 return itsSku;
 }
}

336
www.EBooksWorld.ir

Proxy

Listing 26-13

ProductProxy.java

public class ProductProxy implements Product
{
 private String itsSku;
 public ProductProxy(String sku)
 {
 itsSku = sku;
 }
 public int getPrice() throws Exception
 {
 ProductData pd = DB.getProductData(itsSku);
 return pd.price;
 }

 public String getName() throws Exception
 {
 ProductData pd = DB.getProductData(itsSku);
 return pd.name;
 }

 public String getSku() throws Exception
 {
 return itsSku;
 }
}

The implementation of this proxy is trivial. In fact, it doesn’t quite match the canonical form of the pattern
shown in Figures 26-3 and 26-4. This was an unexpected surprise. My intent was to implement the PROXY pattern.
But when the implementation finally materialized, the canonical pattern made no sense.

As shown below, the canonical pattern would have had ProductProxy create a ProductImp in every
method. It would then have delegated that method to the ProductImp.

public int getPrice() throws Exception
{
 ProductData pd = DB.getProductData(itsSku);
 ProductImp p = new ProductImp(pd.sku, pd.name, pd.price);
 return p.getPrice();
}

The creation of the ProductImp is a complete waste of programmer and computer resources. The
ProductProxy already has the data that the ProductImp accessors would return. So there is no need to create,
and then delegate to, the ProductImp. This is yet another example of how the code may lead you away from the
patterns and models you expected.

Notice that the getSku method of ProductProxy in Listing 26-13 takes this theme one step further. It
doesn’t even bother to hit the database for the sku. Why should it? It already has the sku.

You might be thinking that the implementation of ProductProxy is very inefficient. It hits the database for
each accessor. Wouldn’t it be better if it cached the ProductData item in order to avoid hitting the database?

This change is trivial, but the only thing driving us to do it is our fear. At this point, we have no data to sug-
gest that this program has a performance problem. And besides, we know that the database engine is doing some
caching too. So it’s not clear what building our own cache would buy us. We should wait until we see indications
of a performance problem before we invent trouble for ourselves.

337
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

Proxyifying Relationships. Our next step is to create the proxy for Order. Each Order instance contains
many Item instances. In the relational schema (Figure 26-2), this relationship is captured within the Item table.
Each row of the Item table contains the key of the Order that contains it. In the object model, however, the rela-
tionship is implemented by a Vector within Order. (See Listing 26-4.) Somehow the proxy is going to have to
translate between the two forms.

We begin by posing a test case that the proxy must pass. This test adds a few dummy products to the data-
base. It then obtains proxies to those products, and uses them to invoke addItem on an OrderProxy. Finally, it
asks the OrderProxy for the total price. (See Listing 26-14.) The intent of this test case is to show that an
OrderProxy behaves just like an Order, but that it obtains its data from the database instead of from in-memory
objects.

Listing 26-14

ProxyTest.java

public void testOrderProxyTotal() throws Exception
 {
 DB.store(new ProductData("Wheaties", 349, "wheaties"));
 DB.store(new ProductData("Crest", 258, "crest"));
 ProductProxy wheaties = new ProductProxy("wheaties");
 ProductProxy crest = new ProductProxy("crest");
 OrderData od = DB.newOrder("testOrderProxy");
 OrderProxy order = new OrderProxy(od.orderId);
 order.addItem(crest, 1);
 order.addItem(wheaties, 2);
 assertEquals(956, order.total());
 }

In order to make this test case work, we have to implement a few new classes and methods. The first we’ll
tackle is the newOrder method of DB. It looks like this method returns an instance of something called an
OrderData. OrderData is just like ProductData. It is a simple data structure that represents a row of the
Order database table. It is shown in Listing 26-15.

Listing 26-15

OrderData.java

public class OrderData
{
 public String customerId;
 public int orderId;

 public OrderData()
 {
 }

 public OrderData(int orderId, String customerId)
 {
 this.orderId = orderId;
 this.customerId = customerId;
 }
}

338
www.EBooksWorld.ir

Proxy

Don’t be offended by the use of public data members. This is not an object in the true sense. It is just a con-
tainer for data. It has no interesting behavior that needs to be encapsulated. Making the data variables private and
providing getters and setters would just be a needless complication.

Now we need to write the newOrder function of DB. Notice that when we call it in Listing 26-14, we pro-
vide the ID of the owning customer, but we do not provide the orderId. Each Order needs an orderId to act as
its key. What’s more, in the relational schema, each Item refers to this orderId as a way to show its connection to
the Order. Clearly the orderId must be unique. How does it get created? Let’s write a test to show our intent.
(See Listing 26-16.)

Listing 26-16

DBTest.java

public void testOrderKeyGeneration() throws Exception
{
 OrderData o1 = DB.newOrder("Bob");
 OrderData o2 = DB.newOrder("Bill");
 int firstOrderId = o1.orderId;
 int secondOrderId = o2.orderId;
 assertEquals(firstOrderId+1, secondOrderId);
}

This test shows that we expect the orderId to somehow automatically increment every time a new Order is
created. This is easily implemented by querying the database for the maximum orderId currently in use and then
adding one to it. (See Listing 26-17.)

Listing 26-17

DB.java

 public static OrderData newOrder(String customerId) throws Exception
 {
 int newMaxOrderId = getMaxOrderId() + 1;
 PreparedStatement s = con.prepareStatement(
 "Insert into Orders(orderId,cusid) Values(?,?);");
 s.setInt(1, newMaxOrderId);
 s.setString(2,customerId);
 executeStatement(s);
 return new OrderData(newMaxOrderId, customerId);
 }

 private static int getMaxOrderId() throws SQLException
 {
 Statement qs = con.createStatement();
 ResultSet rs = qs.executeQuery(
 "Select max(orderId) from Orders;");
 rs.next();
 int maxOrderId = rs.getInt(1);
 rs.close();
 return maxOrderId;
 }

339
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

Now we can start to write OrderProxy. As with Product, we need to split Order into an interface and
an implementation. So Order becomes the interface and OrderImp becomes the implementation. (See Listings
26-18 and 26-19.)

Listing 26-18

Order.java

public interface Order
{
 public String getCustomerId();
 public void addItem(Product p, int quantity);
 public int total();
}

Listing 26-19

OrderImp.java

import java.util.Vector;

public class OrderImp implements Order
{
 private Vector itsItems = new Vector();
 private String itsCustomerId;

 public String getCustomerId()
 {
 return itsCustomerId;
 }

 public OrderImp(String cusid)
 {
 itsCustomerId = cusid;
 }

 public void addItem(Product p, int qty)
 {
 Item item = new Item(p,qty);
 itsItems.add(item);
 }

 public int total()
 {
 try
 {
 int total = 0;
 for (int i = 0; i < itsItems.size(); i++)
 {
 Item item = (Item) itsItems.elementAt(i);
 Product p = item.getProduct();
 int qty = item.getQuantity();
 total += p.getPrice() * qty;
 }
 return total;
 }

340
www.EBooksWorld.ir

Proxy

 catch (Exception e)
 {
 throw new Error(e.toString());
 }
 }
}

I had to add some exception processing to OrderImp because the Product interface throws exceptions. I’m
getting frustrated with all these exceptions. The implementations of proxies behind an interface should not have an
effect on that interface, and yet the proxies are throwing exceptions that propagate out through the interface. So I
resolve to change all the Exceptions to Errors so that I don’t have to pollute the interfaces with throws clauses
and the users of those interfaces with try/catch blocks.

How do I implement addItem in the proxy? Clearly the proxy cannot delegate to OrderImp.addItem!
Rather, the proxy is going to have to insert an Item row in the database. On the other hand, I really want to dele-
gate OrderProxy.total to OrderImp.total, because I want the business rules (i.e., the policy for creating
totals) to be encapsulated in OrderImp. The whole point of building proxies is to separate database implementa-
tion from business rules.

In order to delegate the total function, the proxy is going to have to build the complete Order object along
with all its contained Items. Thus, in OrderProxy.total, we are going to have to read in all the items from the
database, call addItem on an empty OrderImp for each item we find, and then call total on that OrderImp.
Thus, the OrderProxy implementation ought to look something like Listing 26-20.

Listing 26-20

OrderProxy.java

import java.sql.SQLException;

public class OrderProxy implements Order
{
 private int orderId;

 public OrderProxy(int orderId)
 {
 this.orderId = orderId;
 }

 public int total()
 {
 try
 {
 OrderImp imp = new OrderImp(getCustomerId());
 ItemData[] itemDataArray = DB.getItemsForOrder(orderId);
 for (int i = 0; i < itemDataArray.length; i++)
 {
 ItemData item = itemDataArray[i];
 imp.addItem(new ProductProxy(item.sku), item.qty);
 }
 return imp.total();
 }
 catch (Exception e)
 {
 throw new Error(e.toString());
 }
 }

341
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

 public String getCustomerId()
 {
 try
 {
 OrderData od = DB.getOrderData(orderId);
 return od.customerId;
 }
 catch (SQLException e)
 {
 throw new Error(e.toString());
 }
 }

 public void addItem(Product p, int quantity)
 {
 try
 {
 ItemData id =
 new ItemData(orderId, quantity, p.getSku());
 DB.store(id);
 }
 catch (Exception e)
 {
 throw new Error(e.toString());
 }
 }

 public int getOrderId()
 {
 return orderId;
 }
}

This implies the existence of an ItemData class and a few DB functions for manipulating ItemData rows.
These are shown in Listings 26-21 through 26-23.

Listing 26-21

ItemData.java

public class ItemData
{
 public int orderId;
 public int qty;
 public String sku = "junk";

 public ItemData()
 {
 }

 public ItemData(int orderId, int qty, String sku)
 {
 this.orderId = orderId;
 this.qty = qty;
 this.sku = sku;
 }

342
www.EBooksWorld.ir

Proxy

 public boolean equals(Object o)
 {
 ItemData id = (ItemData)o;
 return orderId == id.orderId &&
 qty == id.qty &&
 sku.equals(id.sku);
 }
}

Listing 26-22

DBTest.java

 public void testStoreItem() throws Exception
 {
 ItemData storedItem = new ItemData(1, 3, "sku");
 DB.store(storedItem);
 ItemData[] retrievedItems = DB.getItemsForOrder(1);
 assertEquals(1, retrievedItems.length);
 assertEquals(storedItem, retrievedItems[0]);
 }

 public void testNoItems() throws Exception
 {
 ItemData[] id = DB.getItemsForOrder(42);
 assertEquals(0, id.length);
 }

Listing 26-23

DB.java

 public static void store(ItemData id) throws Exception
 {
 PreparedStatement s = buildItemInsersionStatement(id);
 executeStatement(s);
 }

 private static PreparedStatement
 buildItemInsersionStatement(ItemData id) throws SQLException
 {
 PreparedStatement s = con.prepareStatement(
 "Insert into Items(orderId,quantity,sku) " +
 "VALUES (?, ?, ?);");
 s.setInt(1,id.orderId);
 s.setInt(2,id.qty);
 s.setString(3, id.sku);
 return s;
 }

 public static ItemData[] getItemsForOrder(int orderId)
 throws Exception
 {
 PreparedStatement s =
 buildItemsForOrderQueryStatement(orderId);
 ResultSet rs = s.executeQuery();
 ItemData[] id = extractItemDataFromResultSet(rs);
 rs.close();

343
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

 s.close();
 return id;
 }

 private static PreparedStatement
 buildItemsForOrderQueryStatement(int orderId)
 throws SQLException
 {
 PreparedStatement s = con.prepareStatement(
 "SELECT * FROM Items WHERE orderid = ?;");
 s.setInt(1, orderId);
 return s;
 }

 private static ItemData[] extractItemDataFromResultSet(ResultSet rs)
 throws SQLException
 {
 LinkedList l = new LinkedList();
 for (int row = 0; rs.next(); row++)
 {
 ItemData id = new ItemData();
 id.orderId = rs.getInt("orderid");
 id.qty = rs.getInt("quantity");
 id.sku = rs.getString("sku");
 l.add(id);
 }
 return (ItemData[]) l.toArray(new ItemData[l.size()]);
 }

 public static OrderData getOrderData(int orderId)
 throws SQLException
 {
 PreparedStatement s = con.prepareStatement(
 "Select cusid from orders where orderid = ?;");
 s.setInt(1, orderId);
 ResultSet rs = s.executeQuery();
 OrderData od = null;
 if (rs.next())
 od = new OrderData(orderId, rs.getString("cusid"));
 rs.close();
 s.close();
 return od;
 }

Summary of PROXY

This example should have dispelled any false illusions about the elegance and simplicity of using proxies. Proxies
are not trivial to use. The simple delegation model implied by the canonical pattern seldom materializes so neatly.
Rather, we find ourselves short-circuiting the delegation for trivial getters and setters. For methods that manage
1:N relationships, we find ourselves delaying the delegation and moving it into other methods, just as the delega-
tion for addItem was moved into total. Finally, we face the spectre of caching.

We didn’t do any caching in this example. The tests all run in less than a second, so there was no need to
worry overmuch about performance. But in a real application, the issue of performance and the need for intelligent
caching are likely to arise. I do not suggest that you automatically implement a caching strategy because you fear

344
www.EBooksWorld.ir

Proxy

performance will otherwise be too slow. Indeed, I have found that adding caching too early is a very good way to
decrease performance. If you fear performance may be a problem, I recommend that you conduct some experi-
ments to prove that it will be a problem. Once proven, and only once proven, you should start considering how to
speed things up.

The Benefit of PROXY. For all the troublesome nature of proxies, they have one very powerful benefit:
the separation of concerns. In our example, the business rules and the database have been completely separated.
OrderImp has no dependence whatever on the database. If we want to change the database schema or change the
database engine, we can do so without affecting Order, OrderImp, or any of the other business domain classes.

In those instances where separation of business rules from database implementation is critically important,
PROXY can be a good pattern to employ. For that matter, PROXY can be used to separate business rules from any
kind of implementation issue. It can be used to keep the business rules from being polluted by such things as
COM, CORBA, EJB, etc. It is a way to keep the business rule assets of your project separate from the implemen-
tation mechanisms that are currently in vogue.

Dealing with Databases, Middleware, and Other Third Party Interfaces

Third party APIs are a fact of life for software engineers. We buy database engines, middleware engines, class
libraries, threading libraries, etc. Initially, we use these APIs by making direct calls to them from our application
code. (See Figure 26-5.)

Over time, however, we find that our application code becomes more and more polluted with such API calls.
In a database application, for example, we may find more and more SQL strings littering the code that also con-
tains the business rules.

This becomes a problem when the third party API changes. For databases it also becomes a problem when
the schema changes. As new versions of the API or schema are released, more and more of the application code
has to be reworked to align with those changes.

Eventually, the developers decide that they must insulate themselves from these changes. So they invent a
layer that separates the application business rules from the third party API. (See Figure 26-6.) They concentrate
into this layer all the code that uses the third party API and all of the concepts that are related to the API rather than
to the business rules of the application.

Such layers can sometimes be purchased. ODBC or JDBC are such layers. They separate the application
code from the actual database engine. Of course, they are also third party APIs in and of themselves; therefore, the
application may need to be insulated even from them.

Notice that there is a transitive dependency from the Application to the API. In some applications, that
indirect dependence is still enough to cause problems. JDBC, for example, does not insulate the application from
the details of the schema.

In order to attain even better insulation, we need to invert the dependency between the application and the
layer. (See Figure 26-7.) This keeps the application from knowing anything at all about the third party API, either
directly or indirectly. In the case of a database, it keeps the application from direct knowledge of the schema. In the

Figure 26-5 Initial relationship between an application and a third party API

Application

API

345
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

case of a middleware engine, it keeps the application from knowing anything about the datatypes used by that mid-
dleware processor.

This arrangement of dependencies is precisely what the PROXY pattern achieves. The application does not
depend upon the proxies at all. Rather, the proxies depend upon the application and upon the API. This concen-
trates all knowledge of the mapping between the application and the API into the proxies.

Figure 26-6 Introducing an insulation layer

Figure 26-7 Inverting the dependency between the application and Layer

Figure 26-8 How the PROXY inverts the dependency between the application and the Layer

Application

LAYER

API

Application

LAYER

API

DB

«interface»
App

Layer

API

Product
Proxy

Product
Implementation

Product

346
www.EBooksWorld.ir

Stairway to Heaven

This concentration of knowledge means that the proxies are nightmares. Whenever the API changes, the
proxies change. Whenever the application changes, the proxies change. The proxies can become very hard to
deal with.

It’s good to know where your nightmares live. Without the proxies, the nightmares would be spread through-
out the application code.

Most applications don’t need proxies. Proxies are a very heavyweight solution. When I see proxy solutions
in use, my recommendation in most cases is to take them out and use something simpler. But there are cases when
the intense separation between the application and the API afforded by proxies is beneficial. Those cases are
almost always in very large systems that undergo frequent schema or API thrashing. Or they are in systems that
can ride on top of many different database engines or middleware engines.

STAIRWAY TO HEAVEN1

STAIRWAY TO HEAVEN is another pattern that achieves the same dependency inversion as PROXY. It employs a
variation on the class form of the ADAPTER pattern. (See Figure 26-9.)

PersistentObject is an abstract class that knows about the database. It provides two abstract methods:
read and write. It also provides a set of implemented methods that provides the tools needed to implement read
and write. PersistentProduct, for example, uses these tools to implement read and write to read and write
all the data fields of Product from and to the database. By the same token, PersistentAssembly implements
read and write to do the same for the extra fields within Assembly. It inherits the ability to read and write the
fields of Product from PersistentProduct and structures the read and write methods so as to take advan-
tage of that fact.

This pattern is only useful in languages that support multiple inheritance. Note that both PersistentProduct
and PersistentAssembly inherit from two implemented base classes. What’s more, PersistentAssembly finds
itself in a diamond inheritance relationship with Product. In C++, we use virtual inheritance to prevent two instances
of Product from being inherited into PersistentAssembly.

The need for virtual inheritance, or similar relationships in other languages, means that this pattern is some-
what intrusive. It makes itself felt in the Product hierarchy, but the intrusion is minimal.

The benefit of this pattern is that it completely separates knowledge of the database away from the business
rules of the application. Those small bits of the application that need to invoke read and write can do so through
the following exigency:

1. [Martin97].

FIGURE 26-9 STAIRWAY TO HEAVEN

Persistent
Assembly

Assembly

Persistent
Product

+ write
+ read

PersistentObject

Product

347
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

PersistentObject* o = dynamic_cast<PersistentObject*>(product);
if (o)
 o->write();

In other words, we ask the application object if it conforms to the PersistentObject interface, and if so,
we invoke either read or write. This keeps that part of the application that does not need to know about reading
and writing completely independent of the PersistentObject side of the hierarchy.

Example of STAIRWAY TO HEAVEN

Listings 26-24 through 26-34 show an example of STAIRWAY TO HEAVEN in C++. As usual, it is best to start with
the test case. CppUnit2 is a bit wordy if shown in its entirety, so I have only included the test-case methods in List-
ing 26-24. The first test-case verifies that a PersistentProduct can be passed around the system as a Product
and then converted to a PersistentObject and written at will. We assume that the PersistentProduct will
write itself in a simple XML format. The second test case verifies the same for PersistentAssembly, the only
difference being the addition of a second field in the Assembly object.

Listing 26-24

productPersistenceTestCase.cpp {abridged}

void ProductPersistenceTestCase::testWriteProduct()
{
 ostrstream s;
 Product* p = new PersistentProduct("Cheerios");
 PersistentObject* po = dynamic_cast<PersistentObject*>(p);
 assert(po);
 po->write(s);
 char* writtenString = s.str();
 assert(strcmp("<PRODUCT><NAME>Cheerios</NAME></PRODUCT>",
 writtenString) == 0);
}

void ProductPersistenceTestCase::testWriteAssembly()
{
 ostrstream s;
 Assembly* a = new PersistentAssembly("Wheaties", "7734");
 PersistentObject* po = dynamic_cast<PersistentObject*>(a);
 assert(po);
 po->write(s);
 char* writtenString = s.str();
 assert(strcmp("<ASSEMBLY><NAME>Wheaties"
 "</NAME><ASSYCODE>7734</ASSYCODE></ASSEMBLY>",
 writtenString) == 0);

}

Next, in Listings 26-25 through 26-28, we see the definitions and implementations of both Product and
Assembly. In the interest of saving space in our example, these classes are nearly degenerate. In a normal applica-
tion, these classes would contain methods that implemented business rules. Note that there is no hint of persistence
in either of these classes. There is no dependence whatever from the business rules to the persistence mechanism.
This is the whole point of the pattern.

2. One of the XUnit family of unit test frameworks. See www.junit.org, and www.xprogramming.com for more information.

348
www.EBooksWorld.ir

Stairway to Heaven

While the dependency characteristics are good, there is an artifact in Listing 26-27 that is present solely
because of the STAIRWAY TO HEAVEN pattern. Assembly inherits from Product using the virtual keyword.
This is necessary in order to prevent duplicate inheritance of Product in PersistentAssembly. If you refer
back to Figure 26-9, you’ll see that Product is the apex of a diamond3 of inheritance involving Assembly,
PersistentProduct, and PersistentObject. To prevent duplicate inheritance of Product, it must be inher-
ited virtually.

Listing 26-25

product.h

#ifndef STAIRWAYTOHEAVENPRODUCT_H
#define STAIRWAYTOHEAVENPRODUCT_H

#include <string>

class Product
{
 public:
 Product(const string& name);
 virtual ~Product();
 const string& getName() const {return itsName;}
 private:
 string itsName;
};

#endif

Listing 26-26

product.cpp

#include "product.h"

Product::Product(const string& name)
 : itsName(name)
{
}

Product::~Product()
{
}

Listing 26-27

assembly.h

#ifndef STAIRWAYTOHEAVENASSEMBLY_H
#define STAIRWAYTOHEAVENASSEMBLY_H

#include <string>
#include "product.h"

class Assembly : public virtual Product
{
 public:

3. Sometimes facetiously known as the “deadly diamond of death.”

349
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

 Assembly(const string& name, const string& assyCode);
 virtual ~Assembly();

 const string& getAssyCode() const {return itsAssyCode;}
 private:
 string itsAssyCode;
};

#endif

Listing 26-28

assembly.cpp

#include "assembly.h"

Assembly::Assembly(const string& name, const string& assyCode)
 :Product(name), itsAssyCode(assyCode)
{
}

Assembly::~Assembly()
{
}

Listings 26-29 and 26-30 show the definition and implementation of PersistentObject. Note that while
PersistentObject knows nothing of the Product hierarchy, it does seem to know something about how to
write XML. At least it understands that objects are written by writing a header, followed by the fields, followed by
a footer.

The write method of PersistentObject uses the TEMPLATE METHOD4 pattern to control the writing of
all its derivatives. Thus, the persistent side of the STAIRWAY TO HEAVEN pattern makes use of the facilities of the
PersistentObject base class.

Listing 26-29

persistentObject.h

#ifndef STAIRWAYTOHEAVENPERSISTENTOBJECT_H
#define STAIRWAYTOHEAVENPERSISTENTOBJECT_H

#include <iostream>

class PersistentObject
{
 public:
 virtual ~PersistentObject();
 virtual void write(ostream&) const;

 protected:
 virtual void writeFields(ostream&) const = 0;

 private:
 virtual void writeHeader(ostream&) const = 0;
 virtual void writeFooter(ostream&) const = 0;
};

#endif

4. See Chapter 14: Template Method & Strategy: Inheritance vs. Delegation, on page 161.

350
www.EBooksWorld.ir

Stairway to Heaven

Listing 26-30

persistentObject.cpp

#include "persistentObject.h"

PersistentObject::~PersistentObject()
{
}

void PersistentObject::write(ostream& s) const
{
 writeHeader(s);
 writeFields(s);
 writeFooter(s);
 s << ends;
}

Listings 26-31 and 26-32 show the implementation of PersistentProduct. This class implements
the writeHeader, writeFooter, and writeField functions to create the appropriate XML for a
Product. It inherits the fields and accessors from Product and is driven by the write method of its base
class PersistentObject.

Listing 26-31

persistentProduct.h

#ifndef STAIRWAYTOHEAVENPERSISTENTPRODUCT_H
#define STAIRWAYTOHEAVENPERSISTENTPRODUCT_H

#include "product.h"
#include "persistentObject.h"

class PersistentProduct : public virtual Product
 , public PersistentObject
{
 public:
 PersistentProduct(const string& name);
 virtual ~PersistentProduct();

 protected:
 virtual void writeFields(ostream& s) const;

 private:
 virtual void writeHeader(ostream& s) const;
 virtual void writeFooter(ostream& s) const;
};

#endif

Listing 26-32

persistentProduct.cpp

#include "persistentProduct.h"

PersistentProduct::PersistentProduct(const string& name)
:Product(name)
{
}

351
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

PersistentProduct::~PersistentProduct()
{
}

void PersistentProduct::writeHeader(ostream& s) const
{
 s << "<PRODUCT>";
}

void PersistentProduct::writeFooter(ostream& s) const
{
 s << "</PRODUCT>";
}

void PersistentProduct::writeFields(ostream& s) const
{
 s << "<NAME>" << getName() << "</NAME>";
}

Finally, Listings 26-33 and 26-34 show how PersistentAssembly unifies Assembly and Persistent-
Product. Just like PersistentProduct, it overrides writeHeader, writeFooter, and writeFields. How-
ever, it implements writeFields to invoke PersistentProduct::writeFields. Thus, it inherits the ability
to write the Product part of Assembly from PersistentProduct, and it inherits the Product and Assembly
fields and accessors from Assembly.

Listing 26-33

persistentAssembly.h

#ifndef STAIRWAYTOHEAVENPERSISTENTASSEMBLY_H
#define STAIRWAYTOHEAVENPERSISTENTASSEMBLY_H

#include "assembly.h"
#include "persistentProduct.h"

class PersistentAssembly : public Assembly, public PersistentProduct
{
 public:
 PersistentAssembly(const string& name,
 const string& assyCode);
 virtual ~PersistentAssembly();

 protected:
 virtual void writeFields(ostream& s) const;

 private:
 virtual void writeHeader(ostream& s) const;
 virtual void writeFooter(ostream& s) const;
};

#endif

352
www.EBooksWorld.ir

Other Patterns That Can Be Used with Databases

Listing 26-34

persistentAssembly.cpp

#include "persistentAssembly.h"

PersistentAssembly::PersistentAssembly(const string& name, const string& assyCode)
: Assembly(name, assyCode)
, PersistentProduct(name)
, Product(name)
{
}

PersistentAssembly::~PersistentAssembly()
{
}

void PersistentAssembly::writeHeader(ostream& s) const
{
 s << "<ASSEMBLY>";
}

void PersistentAssembly::writeFooter(ostream& s) const
{
 s << "</ASSEMBLY>";
}

void PersistentAssembly::writeFields(ostream& s) const
{
 PersistentProduct::writeFields(s);
 s << "<ASSYCODE>" << getAssyCode() << "</ASSYCODE>";
}

Conclusion. I’ve seen STAIRWAY TO HEAVEN used in many different scenarios with good results. The
pattern is relatively easy to set up and has a minimum impact on the objects that contain the business rules. On the
other hand, it requires a language, like C++, that supports multiple inheritance of implementation.

Other Patterns That Can Be Used with Databases

Extension Object. Imagine an extension object5 that knows how to write the extended object on a data-
base. In order to write such an object, you would ask it for an extension object that matched the “database” key,
cast it to a DatabaseWriterExtension, and then invoke the write function.

Product p = /* some function that returns a Product */
ExtensionObject e = p.getExtension("Database");
if (e != null)
{
 DatabaseWriterExtension dwe = (DatabaseWriterExtension) e;
 e.write();
}

Visitor6. Imagine a visitor hierarchy that knows how to write the visited object on a database. You would
write an object on the database by creating the appropriate type of visitor, and then calling accept on the object to
be written.

5. See “Extension Object” on page 408

6. See “Visitor” on page 388

353
www.EBooksWorld.ir

Chapter 26 • Proxy and Stairway to Heaven: Managing Third Party APIs

Product p = /* some function that returns a Product */
DatabaseWriterVisitor dwv = new DatabaseWriterVisitor();
p.accept(dwv);

Decorator7. There are two ways to use a decorator to implement databases. You can decorate a business
object and give it read and write methods; or you can decorate a data object that knows how to read and write
itself and give it business rules. The latter approach is not uncommon when using object-oriented databases. The
business rules are kept out of the OODB schema and added in with decorators.

Facade. This is my favorite starting point. It’s simple and effective. On the down side, it couples the busi-
ness-rule objects with the database. Figure 26-10 shows the structure. The DatabaseFacade class simply pro-
vides methods for reading and writing all the necessary objects. This couples the objects with the
DatabaseFacade and vice versa. The objects know about the facade because they are often the ones that call the
read and write functions. The facade knows about the objects because it must use their accessors and mutators
to implement the read and write functions.

This coupling can cause a lot of problems in larger applications; but in smaller apps or in apps that are just
starting to grow, it’s a pretty effective technique. If you start using a facade and then later decide to change to one
of the other patterns to reduce coupling, the facade is pretty easy to refactor.

Conclusion
It is very tempting to anticipate the need for PROXY or STAIRWAY TO HEAVEN long before the need really exists.
This is almost never a good idea, especially with PROXY. I recommend starting with FACADE and then refactoring
as necessary. You’ll save yourself time and trouble if you do.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.
2. Martin, Robert C. Design Patterns for Dealing with Dual Inheritance Hierarchies. C++ Report (April): 1997.

7. See “Decorator” on page 403

Figure 26-10 Database Facade

Product
Database
Facade

Assembly

+ readProduct()
+ writeProduct()
+ readAssembly()
+ writeAssembly()

354
www.EBooksWorld.ir

27

Case Study: Weather Station

Written in collaboration with Jim Newkirk

The Following Story is fiction, but you may recognize many elements of it from your own exeperience.

The Cloud Company
The Cloud Company has been the leader in industrial weather monitoring systems (WMS) for the
past several years. Their flagship product has been a WMS that keeps track of temperature, humidity,

barometric pressure, wind speed and direction, etc. The system displays these readings in real time on a display. It
also keeps track of historical information on an hourly and daily basis. This historical data can be pulled up on the
display at the request of the user.

The primary customers of Cloud Company products have been the aviation, maritime, agricultural, and
broadcast industries. For these industries, WMSs are mission-critical applications. The Cloud Company has a
reputation for building highly reliable products that can be installed in relatively uncontrolled environments. This
makes the systems somewhat expensive.

The high cost of these systems has cut the Cloud Company off from customers that do not need, and cannot
afford, the high-reliability systems that they sell. Cloud Company managers believe that this is a large potential
market, and they would like to tap into it.

From Chapter 27 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

355
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

The Problem. A competitor named Microburst, Inc., has recently announced a product line that starts at
the low end and can be incrementally upgraded to higher reliability. This threatens to cut the Cloud Company off
from smaller but growing customers. These customers will already be using Microburst products by the time they
grow to a size that would allow them to use Cloud Company products.

More frightening still, the Microburst product boasts the ability to be interconnected at the high end. That is,
the high-end upgrades can be networked together into a wide-area weather monitoring system. This threatens to
erode the current Cloud Company customer base.

The Strategy. Although Microburst has successfully demonstrated its low-end units at trade shows, they
are not offering production quantity shipments for at least six months. This indicates that there may be engineering
or production problems that Microburst has not solved. Moreover, the high-reliability upgrades promised by
Microburst as part of the product line are currently not available. It seems that Microburst has announced the prod-
uct prematurely.

If the Cloud Company can announce a low-end upgradable and connectable product, and begin shipping it
within six months, then they may be able to capture, or at least stall, customers who would otherwise buy
Microburst’s products. By stalling the market and thereby depriving Microburst of orders, they might be able to
compromise Microburst’s ability to solve their engineering and manufacturing problems, a very desirable
outcome.

The Dilemma. A new low-cost and extendable product line requires a significant amount of engineering.
The hardware engineers have flatly refused to commit to a six-month development deadline. They believe that it
will be twelve months before they could see production-quantity units.

The marketing managers believe that in twelve months, Microburst will be shipping production quantity and
will be capturing an irretrievable part of Cloud Company’s customers.

The Plan. Cloud Company managers have decided to announce their new product line immediately and
to begin accepting orders that will be shipped before six months have elapsed. They have named the new product
Nimbus-LC 1.0. Their plan is to repackage the old, expensive, high-reliability hardware into a new enclosure with
a nice LCD touch panel. The high manufacturing cost of these units means that the company will actually lose
money on each one that they sell.

Concurrently, the hardware engineers will begin to develop the true low-cost hardware, which will be avail-
able in 12 months. This configuration of the product has been called Nimbus-LC 2.0. When production quantities
are available, the Nimbus-LC 1.0 will be phased out.

When a Nimbus-LC 1.0 customer wants to upgrade to a higher level of service, his unit will be replaced with
a Nimbus-LC 2.0 at no additional cost. Thus, the company is willing to lose money on this product for six months
in order to capture, or at least stall, potential Microburst customers.

The WMS-LC Software

The software project for the Nimbus-LC project is complex. The developers must create a software product that
can use both the existing hardware as well as the low-cost 2.0 hardware. Prototype units of the 2.0 hardware will
not be available for nine months. Moreover, the processor on the 2.0 board is not likely to be the same as the pro-
cessor on the 1.0 board. Still, the system must operate identically, regardless of which hardware platform it uses.

The hardware engineers will be writing the lowest-level hardware drivers, and they need the application soft-
ware engineers to design the API for these drivers. This API must be available to the hardware engineers within the
next four months. The software must be production ready in 6 months and must be working with the 2.0 hardware
in 12 months. They want at least 6 weeks of Q/A for the 1.0 device, so the software engineers really have only 20
weeks to get the software working. Since the hardware platform for the 2.0 version is new, they need 8 to 10 weeks
of Q/A. This eats up most of the 3-month period between first prototype and final shipment. Thus the software
engineers will have very little time to make the new hardware work.

356
www.EBooksWorld.ir

Nimbus-LC Software Design

Software Planning Documents. The developers and marketing folks have written several documents that
describe the Nimbus-LC project:

1. “Nimbus-LC Requirements Overview” on page 379
This document describes the operating requirements of the Nimbus-LC system as they were understood at
the time the project was begun.1

2. “Nimbus-LC Use Cases” on page 380
This document describes the actors and use cases derived from the requirements document.

3. “Nimbus-LC Release Plan” on page 381
This document describes the release plan for the software. This plan tries to address the major risks early in
the project life cycle, while assuring that the software will be complete by the necessary deadlines.

Language Selection

The most important constraint upon the language is portability. The short development time, and the even shorter
contact that the software engineers will have with the 2.0 hardware demand that both the 1.0 and 2.0 versions use
the same software. That is, the source code needs to be identical, or nearly so. If the portability constraint cannot
be met by the language, the release of the 2.0 version at the 12-month mark will be in severe jeopardy.

Fortunately, there are few other constraints. The software is not very large, so space is not much of a prob-
lem. There are no hard real-time deadlines that are shorter than one second, so speed is not much of an issue.
Indeed, the real-time deadlines are so weak that a moderately fast garbage-collecting language would not be inap-
propriate. The portability constraints, and the lack of any other serious constraints, make the selection of Java quite
appropriate.

Nimbus-LC Software Design
According to the release plan, one of the major goals of phase I is to create an architecture that will allow the bulk
of the software to be independent of the hardware that it controls. Indeed, we want to separate the abstract behavior
of the weather station from its concrete implementation.

For example, the software must be able to display the current temperature regardless of the hardware config-
uration. This implies the design shown in Figure 27-1.

An abstract base class named TemperatureSensor supplies a polymorphic read() function. Derivatives
of this base class allow for separate implementations of the read() function.

The Test Classes. Notice that there is one derivative for each of the two known hardware platforms. There
is also a special derivative named TestTemperatureSensor. This class will be used to test the software in a

1. We all know that the requirements document is the most volatile document in any software project.

Figure 27-1 Initial Temperature-Sensor Design

Nimbus 1.0
Temperature

Sensor

Nimbus 2.0
Temperature

Sensor

Temperature
Sensor

+ read() : double

Test
Temperature

Sensor

357
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

workstation, which is not connected to Nimbus hardware. This allows the software engineers to write unit tests and
acceptance tests for their software even when they don’t have access to a Nimbus system.

Also, we have very little time to integrate the Nimbus 2.0 hardware and software together. The Nimbus 2.0
version will be at risk because of this short time frame. By making the Nimbus software work with both the Nim-
bus 1.0 hardware and with the test class, we will have made the Nimbus software execute on multiple platforms.
This lessens the risk of significant portability issues with the Nimbus 2.0.

The test classes also give us the opportunity to test features or conditions that are hard to capture in the soft-
ware. For example, we can set up the test classes to produce failures that are difficult to simulate with the
hardware.

Making Periodic Measurements. The most common mode of the Nimbus system is when it is display-
ing current weather-monitoring data. Each of the values are updated at their own particular rate. Temperature is
updated once per minute, while barometric pressure is updated once every five minutes. Clearly, we need some
kind of scheduler that will trigger these readings and communicate them to the user. Figure 27-2 shows a
possible structure.

We imagine the Scheduler to be a base class that has many possible implementations, one for each of the
hardware and test platforms. The Scheduler has a tic function that it expects will be called once every 10 ms. It
is the responsibility of the derived class to make this call. (See Figure 27-3.) The Scheduler counts the tic()
calls. Once per minute, it calls the read() function of the TemperatureSensor and passes the returned temper-
ature to the MonitoringScreen. For phase I, we don’t need to show the temperature in a GUI, so the derivative
of MonitoringScreen simply sends the result to an output stream.

Figure 27-2 Initial Scheduler and Display architecture

Figure 27-3 Initial Scheduler Sequence Diagram

Streaming
Output

Nimbus 1.0
Scheduler

Scheduler

Monitoring Screen

tic()

+ displayTemp(double)
+ displayPressure(double)

Barometric
Pressure Sensor

Temperature
Sensor

schd : Scheduler
schd : Nimbus
1.0 Scheduler

: Temperature
Sensor

: Monitoring
Screen

Every 10 ms

Once per minute

tic()

read()

temp

displayTemp(temp)

358
www.EBooksWorld.ir

Nimbus-LC Software Design

Barometric Pressure Trend. The requirements document says that we must report the trend of the baro-
metric pressure. This is a value that can have three states: rising, falling, or stable. How do we determine the value
of this variable?

According to the Federal Meteorological Handbook,2 the barometric-pressure trend is calculated as follows:

If the pressure is rising or falling at a rate of at least 0.06 inch per hour and the pressure change totals
0.02 inch or more at the time of the observation [to be taken once every three hours], a pressure
change remark shall be reported.

Where do we put this algorithm? If we put it in the BarometricPressureSensor class, then that class
will need to know the time of each reading, and it will have to keep track of a series of readings going back three
hours. Our current design does not allow for this. We could fix this by adding the current time as an argument to
the Read function of the BarometricPressureSensor class and guaranteeing that that function will be called
on a regular basis.

However, this couples the trend calculation to the frequency of user updates. It is not inconceivable that a
change to the user interface update scheme could affect the pressure-trend algorithm. Also, it is very unfriendly for
a sensor to demand that it be read on a regular basis in order to function properly. A better solution needs to be
found.

We could have the Scheduler keep track of barometric pressure history and calculate trends at need. How-
ever, will we then also put temperature and wind speed history in the Scheduler class? Every new kind of sensor
or history requirement would cause us to change the Scheduler class. This has the makings of a maintenance
nightmare.

Reconsidering the Scheduler. Take another look at Figure 27-2. Notice that the Scheduler is con-
nected to each of the sensors and to the user interface. As more sensors are added, and as more user interface
screens are added, they will have to be added to the Scheduler too. Thus, the Scheduler is not closed to the
addition of new sensors or user interfaces. This is a violation of the OCP. We would like to design the Scheduler
so that it is independent of changes and additions to the sensors and user interfaces.

Decoupling the User Interface. User interfaces are volatile. They are subject to the whims of customers,
marketing people, and nearly everyone else who comes in contact with the product. It seems very likely that if any
part of the system suffers requirements thrashing, it will be the user interface. Therefore, we should decouple
it first.

Figures 27-4 and 27-5 show a new design that uses the OBSERVER pattern. We have made the UI a dependent
of the sensor, so that when the sensor reading changes, the UI will be automatically notified. Notice that the depen-

2. Federal Meteorological Handbook No. 1, Chapter 11, Section 11.4.6 (http://www.nws.noaa.gov).

Figure 27-4 Observer decouples UI from Scheduler

Temperature
Observer

+ update()

Temperature
Sensor

Scheduler

- tic()

Observable

+ addObserver()
+ notifyObservers()

Monitoring Screen

+ displayTemp(double)
+ displayPressure(double)

«creates»

Observer

*

359
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

dency is indirect. The actual observer is an ADAPTER3 named TemperatureObserver. This object is notified by
the TemperatureSensor when the temperature reading changes. In response, the TemperatureObsever calls
the DisplayTemp function of the MonitoringScreen object.

This design has nicely decoupled the UI from the Scheduler. The Scheduler now knows nothing of the
UI and can focus solely upon telling the sensors when to read. The UI binds itself to the sensors and expects them
to report any changes. However, the UI does not know about the sensors themselves. It simply knows about a set of
objects that implements the Observable interface. This will allow us to add sensors without making significant
changes to this part of the UI.

We have also solved the problem of the barometric-pressure trend. This reading can now be calculated by
a separate BarometricPressureTrendSensor that observes the BarometricPressureSensor. (See Figure 27-6.)

Rethinking the Scheduler—Yet Again. The major role of the Scheduler is to tell each of the sensors
when they should acquire a new value. However, if future requirements force us to add or remove a sensor, the
Scheduler will need to be changed. Indeed, the Scheduler will have to change, even if we simply want to
change the rate of a sensor. This is an unfortunate violation of the OCP. It seems that the knowledge of a sensor’s
polling rate belongs to the sensor itself and not any other part of the system.

We can decouple the Scheduler from the sensors by using the Listener4 paradigm from the Java class
library. This is similar to OBSERVER in that you register to be notified of something; but in this case, we want to be
notified when a certain event (time) occurs. (See Figure 27-7.)

Sensors create anonymous ADAPTER classes that implement the AlarmListener interface. The sensors
then register those adapters with the AlarmClock (the class we used to call the Scheduler). As part of the regis-
tration, they tell the AlarmClock how often they would like to be woken up (e.g., every second or every fifty mil-
liseconds). When that period expires, the AlarmClock sends the wakeup message to the adapter, which then
sends the read message to the sensor.

This has completely changed the nature of the Scheduler class. In Figure 27-2 it formed the center of our
system and knew about most of the other components. But now it simply sits at the side of the system. It knows

3. [GOF95], p. 139.

Figure 27-5 Decoupled UI sequence diagram

4. [JAVA98], p. 360.

ts : Temperature
Sensor

ts: Observable : Scheduler
: Monitoring

Screen

t : Temperature
Observercreate

displayTemp(val)

notifyObservers(val)

update(val)

read

addObserver(t)

if reading has
changed.

360
www.EBooksWorld.ir

Nimbus-LC Software Design

nothing about the other components. It conforms to the SRP by doing one job—scheduling—which has nothing
whatever to do with weather monitoring. Indeed, it could be reused in many different kinds of applications. In fact,
the change is so dramatic that we have changed the name to AlarmClock.

The Structure of the Sensors. Having decoupled the sensors from the rest of the system, we should look
at their internal structure. Sensors now have three separate functions. First, they have to create and register the
anonymous derivative of the AlarmListener. Second, they have to determine if their readings have changed and
invoke the notifyObservers method of the Observable class. Third, they have to interact with the Nimbus
hardware in order to read the appropriate values.

Figure 27-1 showed how these concerns might be separated. Figure 27-8 integrates that design with the other
changes we have made. The TemperatureSensor base class deals with the first two concerns, since they are
generic. The derivative of TemperatureSensor can then deal with the hardware and perform the actual readings.

Figure 27-8 employs TEMPLATE METHOD in order to achieve the separation between the generic and specific
concerns of the TemperatureSensor. You can see this pattern in the private check and read functions of
TemperatureSensor. When the AlarmClock calls wakeup on the anonymous class, the anonymous class for-
wards the call to the check function of the TemperatureSensor. The check function then calls the abstract
read function of TemperatureSensor. This function will be implemented by the derivative to properly interact
with the hardware and obtain the sensor reading. The check function then determines whether the new reading is
different from the previous reading. If a difference is detected, then it notifies the waiting observers.

Figure 27-6 Barometric Pressure Observers

Figure 27-7 Decoupled Alarm clock

Barometric
Pressure Trend

Sensor

Barometric
Pressure
Sensor

Barometric
Pressure Trend

Observer

Scheduler

Monitoring Screen

- tic()

+ update()

Barometric
Pressure
Observer

+ update()

Observable

+ addObserver()
+ notifyObservers()

+ displayTemp(double)
+ displayPressure(double)
+ displayPressureTrend(double)

Observer

*
«creates»

«creates»

Temperature
Sensor

«anonymous»

AlarmListener
«interface»

+ wakeEvery(interval, AlarmListener)
+ wakeup()

AlarmClock
*

361
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

This nicely accomplishes the separation of concerns that we need. For every new hardware or testing plat-
form, we will be able to create a derivative of TemperatureSensor that will work with it. Moreover, that deriva-
tive must merely override one very simple function: read(). The rest of the functionality of the sensor remains in
the base class where it belongs.

Where Is the API? One of our Release II goals is the creation of a new API for the Nimbus 2.0 hardware.
This API should be written in Java, be extensible, and provide simple and direct access to the Nimbus 2.0 hard-
ware. Furthermore, it must serve the Nimbus 1.0 hardware as well. Without that API, all the simple debugging and
calibration tools that we write for this project will have to be changed when the new board is introduced. Where is
this API within our current design?

It turns out that nothing we have created so far can serve as a simple API. What we are looking for is some-
thing like this:

public interface TemperatureSensor
{
 public double read();
}

We are going to want to write tools that have direct access to this API without having to bother with register-
ing observers. We also don’t want sensors at this level to be polling themselves automatically, or interacting with
the AlarmClock. We want something very simple and isolated that acts as the direct interface to the hardware.

It may seem that we are reversing all our previous arguments. After all, Figure 27-1 shows exactly what we
have just asked for. However, the changes we made subsequent to Figure 27-1 were made for sound reasons. What
we need is a hybrid that mixes the best of both schemes.

Figure 27-9 employs the BRIDGE pattern to extract the true API from the TemperatureSensor. The intent
of this pattern is to separate an implementation from an abstraction, so that both may vary independently. In our
case, the TemperatureSensor is the abstraction, and the TemperatureSensorImp is the implementation.
Notice that the word “implementation” is being used to describe an abstract interface and that the “implementa-
tion” is itself implemented by the Nimbus1.0TemperatureSensor class.

Creational Issues. Look again at Figure 27-9. In order for this to work, a TemperatureSensor object
must be created and bound to a Nimbus1.0TemperatureSensor object. Who takes care of this? Certainly, what-
ever part of the software is responsible for this will not be platform independent, since it must have explicit knowl-
edge of the platform-dependent Nimbus1.0TemperatureSensor.

Figure 27-8 Sensor Structure

AlarmClock

«anonymous»

Nimbus 1.0 C
Api

«C-API»

+ wakeup()

Nimbus 1.0
Temperature

Sensor

- read() {native}

Observable

+ addObserver(Observer)
+ notifyObservers(Object)

Temperature Sensor

- itsLastReading : double

- check()
- read() {abstract}

AlarmListener

public void wakeUp()
{
 check();
}

private void check()
{
double val = read();
if (val != itsLastReading)
{
itsLastReading = val;
setChanged();
notifyObservers(val);

}
}

*

362
www.EBooksWorld.ir

Nimbus-LC Software Design

We could use the main program to do all this. We could write it as shown in Listing 27-1.

Listing 27-1

WeatherStation

public class WeatherStation
{
 public static void main(String[] args)
 {
 AlarmClock ac = new AlarmClock(
 new Nimbus1_0AlarmClock;

 TemperatureSensor ts =
 new TemperatureSensor(ac,
 new Nimbus1_0TemperatureSensor);

 BarometricPressureSensor bps =
 new BarometricPressureSensor(ac,
 new Nimbus1_0BarometricPressureSensor);

 BarometricPressureTrend bpt =
 new BarometricPressureTrend(bps)
 }
}

This is a workable solution, but requires an awful lot of clerical overhead. Instead, we could use FACTORIES

to deal with most of the clerical overhead involved with creation. Figure 27-10 shows the structure.
We have named the factory the StationToolkit. This is an interface that presents methods that offer to

create instances of the API classes. Each platform will have its own derivative of StationToolkit, and that
derivative will create the appropriate derivatives of the API classes.

Figure 27-9 Temperature Sensor with API

AlarmClock

«anonymous» «creates»

Nimbus 1.0 C
Api

«C-API»

+ wakeup()

Nimbus 1.0
Temperature

Sensor

+ read() {native}

Temperature
Sensor Imp

+ read() : double

Observable

+ addObserver(Observer)
+ notifyObservers(Object)

Temperature Sensor

- itsLastReading : double

- check()
+ read()

AlarmListener

"The API"

*

363
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

Now we can rewrite the main function as shown in Listing 27-2. Notice that in order to alter this main
program to work with a different platform, all we have to change is the two lines that create the
Nimbus1.0AlarmClock and the Nimbus1.0Toolkit. This is a dramatic improvement over Listing 27-1, which
required a change for every sensor it created.

Listing 27-2

WeatherStation

public class WeatherStation
{
 public static void main(String[] args)
 {
 AlarmClock ac = new AlarmClock(
 new Nimbus1_0AlarmClock;

 StationToolkit st = new Nimbus1_0Toolkit();

 TemperatureSensor ts =
 new TemperatureSensor(ac,st);

 BarometricPressureSensor bps =
 new BarometricPressureSensor(ac,st);

 BarometricPressureTrend bpt =
 new BarometricPressureTrend(bps)
 }
}

Notice that the StationToolkit is being passed into each sensor. This allows the sensors to create their
own implementations. Listing 27-3 shows the constructor for TemperatureSensor.

Listing 27-3

TemperatureSensor

public class TemperatureSensor extends Observable
{
 public TemperatureSensor(AlarmClock ac,
 StationToolkit st)

Figure 27-10 Station Toolkit

Nimbus 1.0
Temperature

Nimbus 1.0
Toolkit

Nimbus 1.0
Barometric
Pressure

Barometric
Pressure

Sensor Imp

Temperature
Sensor Imp

«interface» «interface»

«creates» «creates»

«interface»

+ make Temperature() : TemperatureSensorImp
+ makeBarometricPressure() : BarometricPressureSensorImp

StationToolkit

364
www.EBooksWorld.ir

Nimbus-LC Software Design

 {
 itsImp = st.makeTemperature();
 }
 private TemperatureSensorImp itsImp;
}

Getting the Station Toolkit to Create the AlarmClock. We can improve matters further by having the
StationToolkit create the appropriate derivative of the AlarmClock. Once again, we will employ the BRIDGE

pattern to separate the AlarmClock abstraction that is meaningful to the weather-monitoring applications, from
the implementation that supports the hardware platform.

Figure 27-11 shows the new AlarmClock structure. The AlarmClock now receives tic() messages
through its ClockListener interface. These messages are sent from the appropriate derivative of the
AlarmClockImp class in the API.

Figure 27-12 shows how the AlarmClock gets created. The appropriate StationToolkit derivative is
passed into the constructor of the AlarmClock. The AlarmClock directs it to create the appropriate derivative of
AlarmClockImp. This is passed back to the AlarmClock, and the AlarmClock registers with it so that it will
receive tic() messages from it.

Once again, this has an effect upon the main program in Listing 27-4. Notice that now there is only one line
that is platform dependent. Change that line, and the entire system will use a different platform.

Listing 27-4

WeatherStation

public class WeatherStation
{
 public static void main(String[] args)
 {
 StationToolkit st = new Nimbus1_0Toolkit();

Figure 27-11 Station Toolkit and Alarm Clock

Nimbus 1.0
AlarmClock

Nimbus 1.0
Toolkit

Clock Listener
«interface»

«interface»

Alarm Clock Imp
«interface»

+ tic()

+ register(ClockListener)

Station Toolkit

+ getAlarmClock() : AlarmClockImp

Alarm Clock

AlarmClock(StationToolkit st)

«creates»

«parameter»

*

365
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

 AlarmClock ac = new AlarmClock(st);
 TemperatureSensor ts =
 new TemperatureSensor(ac,st);

 BarometricPressureSensor bps =
 new BarometricPressureSensor(ac,st);

 BarometricPressureTrend bpt =
 new BarometricPressureTrend(bps)
 }
}

This is pretty good, but in Java we can do even better. Java allows us to create objects by name. The main
program in Listing 27-5 does not need to be changed in order to make it work with a new platform. The name of
the StationToolkit derivative is simply passed in as a command-line argument. If the name was correctly spec-
ified, the appropriate StationToolkit will be created, and the rest of the system will behave appropriately.

Listing 27-5

WeatherStation

public class WeatherStation
{
 public static void main(String[] args)
 {
 try
 {
 Class tkClass = Class.forName(args[0]);
 StationToolkit st =
 (StationToolkit)tkClass.newInstance();

 AlarmClock ac = new AlarmClock(st);

 TemperatureSensor ts =
 new TemperatureSensor(ac,st);

 BarometricPressureSensor bps =
 new BarometricPressureSensor(ac,st);

 BarometricPressureTrend bpt =
 new BarometricPressureTrend(bps)
 }

Figure 27-12 Creation of the Alarm Clock

ac : AlarmClock st : StationToolkit
aci : Nimbus 1.0

Alarm Clock
st : Nimbus 1.0
Station Toolkit

aci : Alarm Clock
Imp

one time only, this
is a singleton.

st

create

aci : AlarmClockImp

create

register(ac : ClockListener)

getAlarmClock()

366
www.EBooksWorld.ir

Nimbus-LC Software Design

 catch (Exception e)
 {
 }
 }
}

Putting the Classes into Packages. There are several portions of this software that we would like to
release and distribute separately. The API and each of its instantiations are reusable without the rest of the applica-
tion and may be used by the testing and quality assurance teams. The UI and sensors should be separate so that
they can vary indepedently. After all, newer products may have better UI’s on top of the same system architecture.
In fact, Release II will be the first example of this.

Figure 27-13 shows a package structure for Phase I. This package structure nearly falls out of the classes we
have designed so far. There is one package for each platform, and the classes in those packages derive from the
classes in the API package. The sole client of the API package is the WeatherMonitoringSystem package,
which holds all the other classes.

Even though Release I has a very small UI, it is unfortunate that it is mixed in with the Weather-
MonitoringSystem classes. It would be better to put this class in a separate package. However, we have a prob-
lem. As things stand, the WeatherStation object creates the MonitoringScreen object, but the
MonitoringScreen object must know about all the sensors in order to add its observers through their
Observable interface. Thus, if we were to pull the MonitoringScreen out into its own package, there would be
a cyclic dependency between that package and the WeatherMonitoringSystem package. This violates the
acyclic-dependencies principle (ADP) and would make the two packages impossible to release independently of
each other.

We can fix this by pulling the main program out of the WeatherStation class. WeatherStation still cre-
ates the StationToolkit and all the sensors, but it does not create the MonitoringScreen. The main program
will create the MonitoringScreen and the WeatherStation. The main program will then pass the
WeatherStation to the MonitoringScreen so that the MonitoringScreen can add its observers to the
sensors.

Figure 27-13 Phase I Package Structure

C API

Test

+ TestToolkit
- TestTemperature
- TestBarometricPressure
- TestAlarmClock

Weather
Monitoring

System

- TemperatureSensor
- BarometricPressureSensor
- AlarmClock
- MonitoringScreen
+ AlarmClockListener
+ WeatherStation

API

+ TemperatureSensorImp
+ BarometricPressureSensorImp
+ AlarmClockImp
+ StationToolkit
+ ClockListener

Nimbus 1.0

+ Nimbus1.0Toolkit
- Nimbus1.0Temperature
- Nimbus1.0BarometricPressure
- Nimbus1.0AlarmClock

Nimbus 2.0

+ Nimbus2.0Toolkit
- Nimbus2.0Temperature
- Nimbus2.0BarometricPressure
- Nimbus2.0AlarmClock

367
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

How does the MonitoringScreen get the sensors from the WeatherStation? We need to add some
methods to the WeatherStation that allow this to take place. See Listing 27-6 to see what this looks like.

Listing 27-6

WeatherStation

public class WeatherStation
{
 public WeatherStation(String tkName)
 {
 //create station toolkit and sensors as before.
 }

 public void addTempObserver(Observer o)
 {
 itsTS.addObserver(o);
 }

 public void addBPObserver(Observer o)
 {
 itsBPS.addObserver(o);
 }

 public void addBPTrendObserver(Observer o)
 {
 itsBPT.addObserver(o);
 }

// private variables...
 private TemperatuerSensor itsTS;
 private BarometricPressureSensor itsBPS;
 private BarometricPressureTrend itsBPT;
}

Now we can redraw the package diagram as shown in Figure 27-14. We have omitted most of the packages
that aren’t concerned with the MonitoringScreen. This looks pretty good. Certainly the UI can be varied with-
out affecting the WeatherMonitoringSystem. However, the dependency of the UI on WeatherMonitoring-
System will cause problems whenever the WeatherMonitoringSystem changes.

Both UI and WeatherMonitoringSystem are concrete. When one concrete package depends on another,
the dependency inversion principle (DIP) is violated. In this case, it would be better if the UI depended on some-
thing abstract rather than the WeatherMonitoringSystem.

We can fix this by creating an interface that the MonitoringScreen can use and that the Weather-
Station derives from. (See Figure 27-15.)

Now, if we put the WeatherStationComponent interface into its own package, we will achieve the sepa-
ration we want. (See Figure 27-16.) Notice that now the UI and the WeatherMonitoringSystem are completely
decoupled. They can both vary independently of each other. This is a good thing.

24-Hour History and Persistence

Points four and five of the Release I deliverables section (see page 382) talk about the need for maintaining a per-
sistent 24-hour history. We know that both the Nimbus 1.0 and Nimbus 2.0 hardware have some kind of nonvola-
tile memory (NVRAM). On the other hand, the test platform will simulate the nonvolatile memory by using the
disk.

368
www.EBooksWorld.ir

Nimbus-LC Software Design

We need to create a persistence mechanism that is independent of the individual platforms, while still pro-
viding the necessary functionality. We also need to connect this to the mechanisms that maintain the 24-hour his-
torical data.

Clearly, the low-level persistence mechanism should be defined as an interface in the API package. What
form should this interface take? The Nimbus I C-API provides calls that allow blocks of bytes to be read and writ-
ten from particular offsets within the nonvolatile memory. While this is effective, it is also somewhat primitive. Is
there a better way?

The Persistent API. The Java environment provides the facilities to allow any object to be immediately
converted into an array of bytes. This process is called serialization. Such an array of bytes can be reconstituted
back into an object through the process of deserialization. It would be convenient if our low-level API allowed us
to specify an object and a name for that object. Listing 27-7 shows what this might look like.

Listing 27-7

PersistentImp

package api;
import java.io.Serializable;

Figure 27-14 Package Diagram with Cycle Broken

Figure 27-15 WeatherStation abstract interface

Main

+ main() {static}

+ MonitoringScreen

UI

Weather
Monitoring

System

- TemperatureSensor
- BarometricPressureSensor
- AlarmClock
+ WeatherStation

API

+ TemperatureSensorImp
+ BarometricPressureSensorImp
+ AlarmClockImp
+ StationToolkit

Monitoring
Screen

WeatherStation

Weather Station Component
«interface»

«parameter»
+ addTempObserver
+ addBPObserver
+ addBPTrendObserver

369
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

import java.util.AbstractList;
public interface PersistentImp
{
 void store(String name, Serializable obj);
 Object retrieve(String name);
 AbstractList directory(String regExp);
};

The PersistentImp interface allows you to store and retrieve full objects by name. The only restric-
tion is that such objects must implement the Serializable interface, a very minimal restriction.

24-Hour History. Having decided on the low-level mechanism for storing persistent data, let’s look at the
kind of data that will be persistent. Our spec says that we must keep a record of the high and low readings for the
previous 24-hour period. Figure 27-23 on page 380 shows a graph with these data. This graph does not seem to
make a lot of sense. The high and low readings are painfully redundant. Worse, they come from the last 24-hours
on the clock and not from the previous calendar day. Usually, when we want the last 24-hour high and low reading,
we want it for the previous calendar day.

Is this a flaw in the spec or a flaw in our interpretation? It will do us no good to implement something
according to the spec if the spec is not really what the customer wants.

A quick verification with the stakeholders shows our intuition to be correct. We do indeed want to keep a
rolling history of the last 24 hours. However, the historical low and high need to be for the previous calendar day.

The 24-hour High and Low. The daily high and low values will be based upon real-time readings of the
sensors. For example, every time the temperature changes, the 24-hour high and low temperatures will be updated
appropriately. Clearly, this is an OBSERVER relationship. Figure 27-17 shows the static structure, and Figure 27-18
shows the relevant dynamic scenarios.

We have chosen to show the OBSERVER pattern using an association marked with the «observes» stereotype.
We have created a class called TemperatureHiLo that is woken up by the AlarmClock every day at midnight.
Notice that the wakeEveryDay method has been added to AlarmClock.

Upon construction of the TemperatureHiLo object, it registers with both the AlarmClock and with the
TemperatureSensor. Whenever the temperature changes, the TemperatureHiLo object is notified through the
OBSERVER pattern. TemperatureHiLo then informs the HiLoData interface using the currentReading

Figure 27-16 Weather Station Component Package Diagram

Main

+ main() {static}

+ MonitoringScreen

UI

+ WeatherStationComponent

Weather
Monitoring

System

Weather
Station

Component

- TemperatureSensor
- BarometricPressureSensor
- AlarmClock
+ WeatherStation

API

+ TemperatureSensorImp
+ BarometricPressureSensorImp
+ AlarmClockImp
+ StationToolkit

370
www.EBooksWorld.ir

Nimbus-LC Software Design

method. HiLoData will have to be implemented with some class that knows how to store the high and low values
for the current 24-hour calendar day.

We have separated the TemperatureHiLo class from the HiLoData class for two reasons. First of all, we
wanted to separate the knowledge of the TemperatureSensor and AlarmClock from the algorithms that deter-
mined the daily highs and lows. Second, and more importantly, the algorithm for determining the daily highs and
lows can be reused for barometric pressure, wind speed, dew point, etc. Thus, though we will need
BarometricPressureHiLo, DewPointHiLo, WindSpeedHiLo, etc. to observe the appropriate sensors, each
will be able to use the HiLoData class to compute and store the data.

At midnight, the AlarmClock sends the wakeup message to the TemperatureHiLo object.
TemperatureHiLo responds by fetching the current temperature from the TemperatureSensor and forwarding
it to the HiLoData interface. The implementation of HiLoData will have to store the previous calendar day’s val-
ues using the PersistentImp interface and will also have to create a new calendar day with the initial value.

PersistentImp accesses objects in the persistent store using a string. This string acts as an access key.
Our HiLoData objects will be stored and retrieved with strings that have the following format:
“<type>+HiLo+<MM><dd><yyyy>.” For example, “temperatureHiLo04161998.”

Implementing the HiLo Algorithms

How do we implement the HiLoData class? This seems pretty straightforward. Listing 27-8 shows what the Java
code for this class looks like.

Figure 27-17 TemperatureHiLo structure

Figure 27-18 HiLo Scenarios

Temperature
Sensor

Temperature
HiLo

HiLo Data
«interface»

«observes»

+ currentReading(double value, long time)
+ newDay(double initial, long time)
+ getHighValue() : double
+ getHighTime() : long
+ getLowValue() : double
+ getLowTime() : long

«anonymous»

+ wakeUp()

Alarm Clock

+ wakeEveryDay(AlarmListener)

AlarmListener

: Temperature
HiLo

: Temperature
HiLo Data

: Temperature
Sensor

: AlarmClock

value

wakeup

Construct

midnight

temperature
change

value

addObserver(this)

wakeEveryDay(AlarmListener)

currentReading(value, time)

update

read()

newDay(value, time)

371
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

Listing 27-8

HiLoDataImp

public class HiLoDataImp implements HiLoData,java.io.Serializable

{

 public HiLoDataImp(StationToolkit st, String type,

 Date theDate, double init,

 long initTime)

 {

 itsPI = st.getPersistentImp();

 itsType = type;

 itsStorageKey = calculateStorageKey(theDate);

 try

 {

 HiLoData t =(HiLoData)itsPI.retrieve(itsStorageKey);

 itsHighTime = t.getHighTime();

 itsLowTime = t.getLowTime();

 itsHighValue = t.getHighValue();

 itsLowValue = t.getLowValue();

 currentReading(init, initTime);

 }

 catch (RetrieveException re)

 {

 itsHighValue = itsLowValue = init;

 itsHighTime = itsLowTime = initTime;

 }

 }

 public long getHighTime() {return itsHighTime;}

 public double getHighValue() {return itsHighValue;}

 public long getLowTime() {return itsLowTime;}

 public double getLowValue() {return itsLowValue;}

 // Determine if a new reading changes the

 // hi and lo and return true if reading changed.

 public void currentReading(double current, long time)

 {

 if (current > itsHighValue)

 {

 itsHighValue = current;

 itsHighTime = time;

 store();

 }

 else if (current < itsLowValue)

 {

 itsLowValue = current;

 itsLowTime = time;

 store();

 }

 }

372
www.EBooksWorld.ir

Nimbus-LC Software Design

 public void newDay(double initial, long time)
 {
 store();
 // now clear it out and generate a new key.
 itsLowValue = itsHighValue = intial;
 itsLowTime = itsHighTime = time;
 // now calculate a new storage key based on
 // the current date, and store the new record.
 itsStorageKey = calculateStorageKey(new Date());
 store()
 }

 private store()
 {
 try
 {
 itsPI.store(itsStorageKey, this);
 }
 catch (StoreException)
 {
 // log the error somehow.
 }
 }

 private String calculateStorageKey(Date d)
 {
 SimpleDateFormat df = new SimpleDateFormat(“MMddyyyy”);
 return(itsType + “HiLo” + df.format(d));
 }
 private double itsLowValue;
 private long itsLowTime;
 private double itsHightValue;
 private long itsHighTime;
 private String itsType;
 // we don’t want to store the following.
 transient private String itsStorageKey;
 transient private api.PersistentImp itsPI;
}

Well, maybe it wasn’t all that straightforward. Let’s walk through this code to see what it does.
At the bottom of the class, you’ll see the private member variables. The first four variables are expected.

They record the high and low values and the times at which those values occurred. The itsType variable remem-
bers the type of readings that this HiLoData is keeping. This variable will have the value “Temp” for temperature,
“BP” for barometric pressure, “DP” for dew point, etc. The last two variables are declared transient. This means
that they will not be stored in the persistent memory. They record the current storage key and a reference to the
PersistentImp.

The constructor takes five arguments. The StationToolkit is needed to gain access to the
PersistentImp. The type and Date arguments will be used to build the storage key used for storing and retriev-
ing the object. Finally, the init and initTime arguments are used to initialize the object in the event that
PersistentImp cannot find the storage key.

The constructor tries to fetch the data from PersistentImp. If the data are present, it copies the nontran-
sient data into its own member variables. Then it calls currentReading with the initial value and time to make

373
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

sure that these readings get recorded. Finally, if currentReading discovers that there was a change in the high or
low data, it returns true, and the Store function is invoked to make sure that the persistent memory is updated.

The currentReading method is the heart of this class. It compares the old high and low values with the
new incoming reading. If the new reading is higher than the old high or lower than the old low, it replaces the
appropriate value, records the appropriate time, and stores the changes in persistent memory.

The newDay method is invoked at midnight. First, it stores the current HiLoData in persistent memory.
Then it resets the values of the HiLoData for the beginning of a new day. It recomputes the storage key for the
new date and then stores the new HiLoData in persistent memory.

The Store function simply uses the current storage key to write the HiLoData object into persistent mem-
ory through the PersistentImp object.

Finally, the calculateStorageKey method builds a storage key from the type of the HiLoData and the
date argument.

Ugliness. Certainly the code in Listing 27-8 is not too difficult to understand. However, there is ugliness
for another reason. The policy embodied in the functions currentReading and newDay have to do with manag-
ing the high-low data and are independent of persistence. On the other hand, the store, and calculate-
StorageKey methods, the constructor, and the transient variables are all specific to persistence and have
nothing to do with the management of the highs and lows. This is a violation of the SRP.

In its current commingled state, this class has the makings of a maintenance nightmare. If something funda-
mental about the persistence mechanism changes, to the extent that the calculateStorageKey and store func-
tions become inappropriate, then new persistence facilities will have to be grafted into the class. Functions like
newDay and currentReading will have to be altered to invoke the new persistence facilities.

Decoupling Persistence from Policy. We can avoid these potential problems by decoupling the high-low
data-management policy from the persistence mechanism using the PROXY pattern. Look back at Figure 26-7 on
page 346. Note the decoupling of the policy layer (application) from the mechanism layer (API).

Figure 27-19 employs the PROXY pattern to effect the necessary decoupling. It differs from Figure 27-17 on
page 371 by the addition of the HiLoDataProxy class. It is the proxy class to which the TemperatureHiLo
object actually holds a reference. The proxy, in turn, holds a reference to a HiLoDataImp object and delegates
calls to it. Listing 27-9 shows the implementing of the critical functions of both HiLoDataProxy and
HiLoDataImp.

Figure 27-19 Proxy pattern applied to HiLo persistence

Temperature
HiLo

java.io.
Serializable

Persistent Imp

HiLoData
«interface»

+ currentReading
+ newDay

HiLoDataImp

- itsHighValue
- itsLowValue
- itsHighTime
- itsLowTime

+ currentReading
+ newDay

HiLoDataProxy

- itsStorageKey
- itsType

+ currentReading
+ newDay
- store
- calculateStorageKey

374
www.EBooksWorld.ir

Nimbus-LC Software Design

Listing 27-9

Snippets of the Proxy solution

class HiLoDataProxy implements HiLoData

{

 public boolean currentReading(double current, long time)

 {

 boolean change;

 change = itsImp.currentReading(current, time);

 if (change)

 store();

 return change;

 }

 public void newDay(double initial, long time)

 {

 store();

 itsImp.newDay(initial, time);

 calculateStorageKey(new Date(time));

 store();

 }

 private HiLoDataImp itsImp;

}

class HiLoDataImp implements HiLoData, java.io.Serializable

{

 public boolean currentReading(double current, long time)

 {

 boolean changed = false;

 if (current > itsHighValue)

 {

 itsHighValue = current;

 itsHighTime = time;

 changed = true;

 }

 else if (current < itsLowValue)

 {

 itsLowValue = current;

 itsLowTime = time;

 changed = true;

 }

 return changed;

 }

 public void newDay(double initial, long time)

 {

 itsHighTime = itsLowTime = time;

 itsHighValue = itsLowValue = initial;

 }

};

375
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

Notice how the HiLoDataImp class has no inkling of persistence. Notice also that the HiLoDataProxy
class takes care of all the persistence ugliness and then delegates to the HiLoDataImp. This is nice. Furthermore,
notice how the proxy depends on both HiLoDataImp (the policy layer) and PersistentImp (the mechanism
layer). This is exactly what we were after.

But all is not perfect. The astute reader will have caught the change that we made to the currentReading
method. We changed it to return a boolean. We need this boolean in the proxy so that the proxy knows when to
call store. Why don’t we call store every time currentReading is called? There are many varieties of
NVRAM. Some of them have an upper limit on the number of times you can write to them. Therefore, in order to
prolong the life of the NVRAM, we only store into it when the values change. Real life intrudes, yet again.

Factories and Initialization. Clearly, we don’t want TemperatureHiLo to know anything about the
proxy. It should know only about HiLoData. (See Figure 27-19.) Yet somebody is going to have to create
the HiLoDataProxy for the TemperatureHiLo object to use. Also, someone is going to have to create the
HiLoDataImp to which the proxy delegates.

What we need is a way to create objects without knowing exactly what type of object we are creating. We
need a way for TemperatureHiLo to create a HiLoData without knowing that it is really creating a
HiLoDataProxy and a HiLoDataImp. Again, we fall back on the FACTORY pattern. (See Figure 27-20.)

TemperatureHiLo uses the DataToolkit interface to create an object that conforms to the HiLoData
interface. The getTempHiLoData method gets deployed to a DataToolkitImp object, which creates a
HiLoDataProxy whose type code is “Temp” and returns it as a HiLoData.

This solves the creation problem nicely. TemperatureHiLo does not need to depend upon the
HiLoDataProxy in order to create it. But how does TemperatureHiLo gain access to the DataToolkitImp
object? We don’t want TemperatureHiLo to know anything about DataTookitImp because that would create a
dependency from the policy layer to the mechanism layer.

Package Structure. To answer this question, let’s look at the package structure in Figure 27-21. The
abbreviation WMS stands for the Weather Monitoring System package that was described in Figure 27-16 on
page 370.

Figure 27-21 reenforces our desire for the persistence-interface layer to depend on the policy and mecha-
nism layers. It also shows how we have deployed the classes into the packages. Notice that the abstract factory,

Figure 27-20 Using Abstract Factory to create the Proxy

Temperature
HiLo

java.io.
Serializable

Persistent Imp

DataToolkit Imp

HiLoData
«interface»

+ currentReading
+ newDay

HiLoDataImp

- itsHighValue
- itsLowValue
- itsHighTime
- itsLowTime

+ currentReading
+ newDay

HiLoDataProxy

- itsStorageKey
- itsType

+ currentReading
+ newDay
- store
- calculateStorageKey

«creates»

DataToolkit
«interface»

+ getTempHiLoData() : HiLoData

376
www.EBooksWorld.ir

Nimbus-LC Software Design

DataToolkit, is defined in the WMSData package along with HiLoData. HiLoData is implemented in the WMS-
DataImp package, whereas DataToolkit is implemented in the persistence package.

Who Creates the Factory? Now, we ask the question once again. How does the instance of
wms.TemperatureHiLo gain access to an instance of persistence.DataToolkitImp so that it can call the
getTempHiLoData method and create instances of persistence.HiLoDataProxy?

What we need is some statically allocated variable, accessible to the classes in wmsdata, that is declared to
hold a wmsdata.DataToolkit, but which is initialized to hold a persistence.DataToolkitImp. Since all
variables in Java, including static variables, must be declared in some kind of class, we can create a class named
Scope that will have the static variables that we need. We will put this class in the wmsdata package.

Listings 27-10 and 27-11 show how this works. The Scope class in wmsdata declares a static member vari-
able that holds a DataToolkit reference. The Scope class in the persistence package declares an init()
function that creates a DataToolkitImp instance and stores it in the wmsdata.Scope.itsDataToolkit
variable.

Listing 27-10

wmsdata.Scope

package wmsdata;

public class Scope
{
 public static DataToolkit itsDataToolkit;
}

Listing 27-11

persistence.Scope

package persistence;

public class Scope
{
 public static void init()
 {
 wmsdata.Scope.itsDataToolkit =
 new DataToolkit();
 }
}

Figure 27-21 PROXY and FACTORY package structure

wms

wmsdata

+ TemperatureHiLo
+ TemperatureSensor

wms
data imp
+ HiLoDataImp

persistence

+ HiLoDataProxy
+ DataToolkitImp

+ HiLoData
+ DataToolkit

api

+ PersistentImp

Nimbus 1.0

377
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

There is an interesting symmetry between the packages and the scope classes. All the classes in the wmsdata
package, other than Scope, are interfaces that have abstract methods and no variables. But the wmsdata.Scope
class has a variable and no functions. On the other hand, all the classes in the persistence package, other than
Scope, are concrete classes that have variables. But persistence.Scope has a function and no variables.

Figure 27-22 shows how this might be depicted in a class diagram. The Scope classes are «utility»
classes. All the members of such classes, whether variables or functions, are static—a final element to the sym-
metry. It would appear that packages which contain abstract interfaces tend to contain utilities that have data and
no functions, whereas packages which contain concrete classes tend to contain utilities that have functions
and no data.

So, Who Calls persistence.Scope.init()? Probably the main() function. The class that holds
that main function must be in a package that does not mind a dependency upon persistence. We often call the
package that contains main the root package.

But You Said... The persistence-implementation layer should not depend on the policy layer. However, a
close inspection of Figure 27-21 shows a dependency from the persistence to wmsDataImp. This dependency
can be traced back to Figure 27-20, in which HiLoDataProxy depends on HiLoDataImp. The reason for this
dependency is so HiLoDataProxy can create the HiLoDataImp that it depends on.

In most cases, the proxy will not have to create the imp because the proxy will be reading the imp from per-
sistent store. That is, the HiLoDataImp will be returned to the proxy by a call to PersistentImp.retrieve.
However, in those rare cases where the retrieve function does not find an object in the persistent store, HiLoData-
Proxy is going to have to create an empty HiLoDataImp.

So, it looks like we need another factory that knows how to create HiLoDataImp instances and that the
proxy can call. This means more packages and more Scope classes, etc.

Is This Really Necessary? Probably not in this case. We created the factory for the proxy because we
wanted TemperatureHiLo to be able to work with many different persistence mechanisms. Thus, we had a
solid benefit to justify the DataToolkit factory. But what benefit would be obtained from interposing a
factory between HiLoDataProxy and HiLoDataImp? If there could be many different implementations of
HiLoDataImp, and if we wanted the proxy to work with them all, then we might be justified.

However, we don’t believe that the requirements are quite that volatile. The wmsDataImp package contains
weather-monitoring policies and business rules that have remained unchanged for quite a while. It seems unlikely
that they will be changing any time in the future. This may sound like famous last words, but you have to draw the
line somewhere. In this case, we have decided that the dependency from the proxy to the imp does not represent a
big maintenance risk, and we will live without the factory.

Figure 27-22 Scope Utilities

DataToolkit

DataToolkitlmp

«interface»

persistence.
Scope

«utility»

«creates»

wmsdata.Scope
«utility»

378
www.EBooksWorld.ir

Conclusion

Conclusion
Jim Newkirk and I wrote this chapter in early 1998. Jim did the bulk of the coding, and I translated the code into
UML diagrams and put words around them. The code is now long-gone. But it was the production of that code that
drove the design you see in these pages. Most of the diagrams were produced after the code was complete.

In 1998 neither Jim nor I had heard of Extreme Programming. So the design you see here was not conducted
in an environment of Pair-programming and test-driven development. However, Jim and I have always worked in a
highly collaborative fashion. Together we would pore over the code he wrote, running it where feasible, making
design changes together, and then producing the UML and words in this chapter.

So, although the design here is pre-XP, it was still created in a highly collaborative, code-centric way.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.
2. Meyer, Bertrand. Object-Oriented Software Construction, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1997.
3. Arnold, Ken, and James Gosling. The Java Programming Language, 2nd ed. Reading, MA: Addison–Wesley, 1998.

Nimbus-LC Requirements Overview

Usage Requirements

This system shall provide automatic monitoring of various weather conditions. Specifically, it must measure the
following variables:

• Wind speed and direction
• Temperature
• Barometric pressure
• Relative humidity
• Wind chill
• Dew-point temperature

The system shall also provide an indication of the current trend in the barometric-pressure reading. The three
possible values include stable, rising, and falling. For example, the current barometric pressure is 29.95 inches of
mercury (IOM) and falling.

The system shall have a display, which continuously indicates all measurements, as well as the current time
and date.

24-Hour History

Through the use of a touch screen, the user may direct the system to display the 24-hour history of any of the fol-
lowing measurements:

• Temperature
• Barometric pressure
• Relative humidity

This history shall be presented to the user in the form a line chart. (See Figure 27-23.)

User Setup

The system shall provide the following facilities to the user to allow the station to be configured during
installation:

• Setting the current time, date, and time zone.
• Setting the units that will be displayed (English or metric)

379
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

Administrative Requirements

The system shall provide a security mechanism for access to the administrative functions of the weather station.
These functions include the following:

• Calibrating the sensors against known values
• Resetting the station

Nimbus-LC Use Cases

Actors

In this system, there are two distinct roles played by users.

User. Users view the real-time weather information that the station is measuring. They also interact with
the system to display the historical data associated with the individual sensors.

Administrator. The administrator manages the security aspects of the system, calibrating the individual
sensors, setting the time/date, setting units of measure, and resetting the station when required.

Use Cases

Use Case #1: Monitor Weather Data. The system will display the current temperature, barometric pres-
sure, relative humidity, wind speed, wind direction, wind chill temperature, dew point, and barometric-pressure
trend.

Measurement History

The system will display a line graph depicting the previous 24 hours of readings from the sensors in the system. In
addition to the graph, the system will display the current time and date and the highest and lowest readings from
the previous 24 hours.

Use Case #2: View Temperature History.

User Case #3: View Barometric Pressure History.

Use Case #4: View Relative Humidity History.

Figure 27-23 Temperature History

Temperature 12/10/97 7:42:04
High: 72 Low: 19

80
70
60
50
40
30
20
10
0

T
e
m

p
e
ra

tu
re

8:
00

10
:0

0
12

:0
0

14
:0

0
16

:0
0

18
:0

0
20

:0
0

22
:0

0
0:

00
2:

00
4:

00
6:

00

Time

380
www.EBooksWorld.ir

Nimbus-LC Release Plan

Setup

Use Case #5: Set Units. The user sets the type of units that will be displayed. The choices are between
English and metric values. The default is metric.

Use Case #6: Set Date. The user will set the current date.

Use Case #7: Set Time. The user will set the current time and time zone for the system.

Administration

Use Case #8: Reset Weather Station. The administrator has the ability to reset the station back to its
factory default settings. It is important to note that this will erase all of the history that is stored in the station and
remove any calibration that may have occurred. As one last check, it will inform the administrator of the conse-
quences and prompt for a go/no go to reset the station.

Use Case #9: Calibrate Temperature Sensor. The administrator, using a known good source for the
temperature, will enter that value into the system. The system shall accept the value and use it internally to cali-
brate that actual reading with the readings it is currently measuring. For a detailed look at calibrating the sensors,
see the hardware description document.

Use Case #10: Calibrate Barometric-Pressure Sensor.

Use Case #11: Calibrate Relative-Humidity Sensor.

Use Case #12: Calibrate Wind-Speed Sensor.

Use Case #13: Calibrate Wind-Direction Sensor.

Use Case #14: Calibrate Dew-Point Sensor.

Use Case #15: Calibration Log. The system will show the administrator the calibration history of the
unit. This history includes the time and date of the calibration, the sensor calibrated, and the value that was used to
calibrate the sensor.

Nimbus-LC Release Plan

Introduction

The implementation of the weather station will be done in a series of iterations. Each iteration will build on what
has been done previously until we have provided the functionality which is required for release to the customer.
This document outlines three releases for this project.

Release I

The release has two goals. The first is to create an architecture that will support the bulk of the application in a
manner that is independent of the Nimbus hardware platform. The second goal is to manage the two biggest risks:

1. Getting the old Nimbus 1.0 API to work on the processor board with a new operating system. This is cer-
tainly doable, but it is very hard to estimate how long this will take because we cannot anticipate all the
incompatibilities.

2. The Java Virtual Machine. We have never used a JVM on an embedded board before. We don’t know if it
will work with our operating system, or even if it correctly implements all of the Java byte codes properly.
Our suppliers assure us that everything will be fine, but we still perceive a significant risk.

381
www.EBooksWorld.ir

Chapter 27 • Case Study: Weather Station

The integration of the JVM with the touch screen and graphics subsystem is proceeding in parallel with this
release. It is expected to be complete prior to the beginning of the second phase.

Risks

1. Operating system upgrade—We currently use an older version of this OS on our board. In order to use the
JVM, we need to upgrade to the latest version of the OS. This also requires us to use the latest version of the
development tools.

2. The OS vendor is providing the latest version of the JVM on this version of the OS. In order to stay current,
we want to use the 1.2 version of the JVM. However, V1.2 is currently in beta and will change during the
construction of the project.

3. Java native interface to the board level “C” API needs to be verified in the new architecture.

Deliverable(s)

1. Our hardware running the new OS along with the latest version of the JVM.
2. A streaming output, which will display the current temperature and barometric-pressure readings. (Throw

away code not used in final release.)

3. When there is a change in the barometric pressure, the system will inform us as to whether the pressure is
rising, falling, or stable.

4. Every hour, the system will display the past 24 hours of measurements for the temperature and barometric
pressure. These data will be persistent in that we can cycle the power on the unit and the data will be saved.

5. Every day at 12:00 A.M., the system will display the high and low temperature and barometric pressure for
the previous day.

6. All measurements will be in the metric system.

Release II

During this phase of the project, the basis for the user interface is added to the first release. No additional measure-
ments are added. The only change to the measurements themselves is the addition of the calibration mechanism.
The primary focus in this phase is on the presentation of the system. The major risk is the software interface to the
LCD panel/touch screen. Also, since this is the first release that will display the UI in a form that can be shown to
the user, we may begin to have some churn in the requirements. In addition to the software, we will be delivering a
specification for the new hardware. This is the main reason for adding of the calibration to this phase of the project.
This API will be specified in Java.

Use Cases Implemented

• #2—View Temperature History
• #3—View Barometric-Pressure History
• #5—Set Units
• #6—Set Date
• #7—Set Time/Time Zone
• #9—Calibrate Temperature Sensor
• #10—Calibrate Barometric-Pressure Sensor

382
www.EBooksWorld.ir

Nimbus-LC Release Plan

Risks

1. The LCD-panel/touch-screen interface to the Java virtual machine needs to be tested on the actual hardware.
2. Requirements changes.
3. Changes in the JVM, along with changes in the Java foundation classes as they proceed from beta to released

form.

Deliverable(s)

1. A system that executes and provides all of the functionality specified in the use cases listed above.
2. The temperature, barometric pressure, and time/date portion of Use Case #1 will also be implemented.
3. The GUI portion of the software architecture will be completed as part of this phase.
4. The administrative portion of the software will be implemented to support the temperature and barometric

pressure calibrations.
5. A specification for the new hardware API specified in Java instead of “C.”

Release III

This is the release prior to customer deployment of the product.

Use Cases Implemented

• #1—Monitor Weather Data
• #4—View Relative-Humidity History
• #8—Reset Weather Station
• #11—Calibrate Relative-Humidity Sensor
• #12—Calibrate Wind-Speed Sensor
• #13—Calibrate Wind-Direction Sensor
• #14—Calibrate Dew-Point Sensor
• #15—Calibration Log

Risks

1. Requirements changes—It is expected that, as more of the product is completed, there may be changes
required.

2. Completing the entire product may indicate changes to the hardware API that was specified at the end of
Release II.

3. Limits of hardware—As we complete the product, we may run into limitations of the hardware (i.e., mem-
ory, CPU, etc.).

Deliverable(s)

1. The new software running on the old hardware platform.
2. A specification for the new hardware that has been validated with this implementation.

383
www.EBooksWorld.ir

384
www.EBooksWorld.ir

SECTION 6

The ETS Case Study

To become a licensed architect in the United States or Canada, you must pass an examination. If you pass, a state
licensing board will give you a license to practice architecture. The examination was developed by the Educational
Testing Service (ETS) under a charter by the National Council of Architectural Registration Boards (NCARB),
and is currently administered by the Chauncey Group International.

In the past, the candidates completed the examination in pencil and paper. These completed examinations
were then given to a cadre of jurors for scoring. These jurors were highly experienced architects who would pore
over the examinations and decide whether to pass or fail them.

In 1989 NCARB commissioned ETS to research whether or not an automated system could deliver and
score portions of the exam. The chapters in this section describe portions of the resulting project. As before, we
will encounter a number of useful design patterns in design of this software, so the chapters describing those pat-
terns precede the case study.

From Section 6 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

385
www.EBooksWorld.ir

386
www.EBooksWorld.ir

28

VISITOR

“’T is some visitor,” I muttered, “tapping at my chamber door;
Only this and nothing more.”

—Edgar Allen Poe, The Raven

Problem: You need to add a new method to a hierarchy of classes, but the act of adding it will be pain-
ful or damaging to the design.

This is a common problem. For example, suppose you have a hierarchy of Modem objects. The base class has the
generic methods common to all modems. The derivatives represent the drivers for many different modem manu-
facturers and types. Suppose also that you have a requirement to add a new method, named configureForUnix,
to the hierarchy. This method will configure the modem to work with the UNIX operating system. It will do some-
thing different in each modem derivative, because each different modem has its own particular idiosyncrasies for
setting its configuration and dealing with UNIX.

Unfortunately, adding configureForUnix begs a terrible set of questions. What about Windows? What
about MacOs? What about Linux? Must we really add a new method to the Modem hierarchy for every new operat-
ing system that we use? Clearly this is ugly. We’ll never be able to close the Modem interface. Every time a new
operating system comes along, we’ll have to change that interface and redeploy all the modem software.

From Chapter 28 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

387
www.EBooksWorld.ir

Chapter 28 • Visitor

The VISITOR Family of Design Patterns
The VISITOR family allows new methods to be added to existing hierarchies without modifying the hierarchies.

The patterns in this family are as follows:

• VISITOR

• ACYCLIC VISITOR

• DECORATOR

• EXTENSION OBJECT

VISITOR1

Consider the Modem hierarchy in Figure 28-1. The Modem interface contains the generic methods that all modems
can implement. There are three derivatives shown—one that drives a Hayes modem, another that drives a Zoom
modem, and a third that drives the modem card produced by Ernie, one of our hardware engineers.

How can we configure these modems for UNIX without putting the ConfigureForUnix method in the
Modem interface? We can use a technique called dual dispatch, which is the mechanism at the heart of the VISITOR

pattern.
Figure 28-2 shows the VISITOR structure and Listings 28-1 through 28-6 show the corresponding Java code.

Listing 28-7 shows the test code that both verifies that the VISITOR works and demonstrates how another program-
mer should use it.

Listing 28-1

Modem.java

public interface Modem
{
 public void dial(String pno);
 public void hangup();
 public void send(char c);
 public char recv();
 public void accept(ModemVisitor v);
}

1. [GOF95], p. 331.

Figure 28-1 Modern Hierarchy

Hayes Zoom Ernie

Modem
«interface»

+ Dial
+ Send
+ Hangup
+ Recv

388
www.EBooksWorld.ir

Visitor

Listing 28-2

ModemVisitor.java

public interface ModemVisitor
{
 public void visit(HayesModem modem);
 public void visit(ZoomModem modem);
 public void visit(ErnieModem modem);
}

Listing 28-3

HayesModem.java

public class HayesModem implements Modem
{
 public void dial(String pno){}
 public void hangup(){}
 public void send(char c){}
 public char recv() {return 0;}
 public void accept(ModemVisitor v) {v.visit(this);}

 String configurationString = null;
}

Listing 28-4

ZoomModem.java

public class ZoomModem implements Modem
{
 public void dial(String pno){}
 public void hangup(){}
 public void send(char c){}
 public char recv() {return 0;}
 public void accept(ModemVisitor v) {v.visit(this);}

 int configurationValue = 0;
}

FIGURE 28-2 VISITOR

Hayes Zoom Ernie UnixModem
Configurator

Modem
«interface»

+ Dial
+ Send
+ Hangup
+ Recv
+ accept(ModemVisitor)

ModemVisitor
«interface»

+ visit(Hayes)
+ visit(Zoom)
+ visit(Ernie)

public void accept(ModemVisitor v)
{
 v.visit(this)
}

389
www.EBooksWorld.ir

Chapter 28 • Visitor

Listing 28-5

ErnieModem.java

public class ErnieModem implements Modem
{
 public void dial(String pno){}
 public void hangup(){}
 public void send(char c){}
 public char recv() {return 0;}
 public void accept(ModemVisitor v) {v.visit(this);}

 String internalPattern = null;
}

Listing 28-6

UnixModemConfigurator.java

public class UnixModemConfigurator implements ModemVisitor
{
 public void visit(HayesModem m)
 {
 m.configurationString = "&s1=4&D=3";
 }

 public void visit(ZoomModem m)
 {
 m.configurationValue = 42;
 }

 public void visit(ErnieModem m)
 {
 m.internalPattern = "C is too slow";
 }
}

Listing 28-7

TestModemVisitor.java

import junit.framework.*;
public class TestModemVisitor extends TestCase
{
 public TestModemVisitor(String name)
 {
 super(name);
 }

 private UnixModemConfigurator v;
 private HayesModem h;
 private ZoomModem z;
 private ErnieModem e;

 public void setUp()
 {
 v = new UnixModemConfigurator();
 h = new HayesModem();
 z = new ZoomModem();

390
www.EBooksWorld.ir

Acyclic Visitor

 e = new ErnieModem();
 }

 public void testHayesForUnix()
 {
 h.accept(v);
 assertEquals("&s1=4&D=3", h.configurationString);
 }

 public void testZoomForUnix()
 {
 z.accept(v);
 assertEquals(42, z.configurationValue);
 }

 public void testErnieForUnix()
 {
 e.accept(v);
 assertEquals("C is too slow", e.internalPattern);
 }
}

Notice that there is a method in the visitor hierarchy for every derivative of the visited (Modem) hierarchy.
This is a kind of 90˚ rotation—from derivatives to methods.

The test code shows that to configure a modem for UNIX, a programmer creates an instance of the
UnixModemConfigurator class and passes it to the accept function of the Modem. The appropriate Modem
derivative will then call visit(this) on ModemVisitor, the base class of UnixModemConfigurator. If that
derivative is a Hayes, then visit(this) will call public void visit(Hayes). This will deploy to the
public void visit(Hayes) function in UnixModemConfigurator, which then configures the Hayes modem
for Unix.

Having built this structure, new operating-system configuration functions can be added by adding new deriv-
atives of ModemVisitor without altering the Modem hierarchy in any way. So the VISITOR pattern substitutes
derivatives of ModemVisitor for methods in the Modem hierarchy.

This is called dual dispatch because it involves two polymorphic dispatches. The first is the accept func-
tion. This dispatch resolves the type of the object that accept is called upon. The second dispatch is the visit
method which resolves to the particular function to be executed. These two dispatches give VISITOR very fast exe-
cution speed.

VISITOR Is Like a Matrix

The two dispatches of VISITOR form a matrix of functions. In our modem example, one axis of the matrix is the
different types of modems. The other axis is the different types of operating systems. Every cell in this matrix is
filled in with a function that describes how to initialize the particular modem for the particular operating system.

ACYCLIC VISITOR

Notice that the base class of the visited (Modem) hierarchy depends on the base class of the visitor hierarchy
(ModemVisitor). Notice also that the base class of the visitor hierarchy has a function for each derivative of the
visited hierarchy. Thus, there is a cycle of dependencies that ties all the visited derivatives (all the Modems)
together. This makes it very difficult to compile the visitor structure incrementally or to add new derivatives to the
visited hierarchy.

391
www.EBooksWorld.ir

Chapter 28 • Visitor

The VISITOR works very well in programs where the hierarchy to be modified does not need new derivatives
very often. If Hayes, Zoom, and Ernie were the only Modem derivatives that were likely to be needed, or if the
incidence of new Modem derivatives was expected to be infrequent, then the VISITOR would be very appropriate.

On the other hand, if the visited hierarchy is highly volatile, such that many new derivatives will need to be
created, then the Visitor base class (e.g., ModemVisitor) will have to be modified and recompiled along with
all its derivatives every time a new derivative is added to the visited hierarchy. In C++, the situation is even worse.
The entire visited hierarchy must be recompiled and redeployed whenever any new derivative is added.

To solve these problems, a variation known as ACYCLIC VISITOR can be used.2 (See Figure 28-3.) This vari-
ation breaks the dependency cycle by making the Visitor base class (ModemVisitor) degenerate.3 The lack of
any methods in this class means that it does not depend on the derivatives of the visited hierarchy.

The visitor derivatives also derive from visitor interfaces. There is one visitor interface for each derivative of
the visited hierarchy. This is a 180˚ rotation from derivatives to interfaces. The accept functions in the visited
derivatives cast the Visitor base class4 to the appropriate visitor interface. If the cast succeeds, the method
invokes the appropriate visit function. Listings 28-8 through 28-16 show the code.

2. [PLOPD3], p. 93.

3. A degenerate class is one that has no methods at all. In C++, it would have a pure virtual destructor. In Java, such classes are called
“Marker Interfaces.”

FIGURE 28-3 ACYCLIC VISITOR

4. In C++, we use dynamic_cast.

Hayes Zoom Ernie

UnixModem
Configurator

Modem
«interface»

+ Dial
+ Send
+ Hangup
+ Recv
+ accept(ModemVisitor)

ModemVisitor
«degenerate»

public void accept (ModemVisitor v) {
try {

HayesVisitor hv = (HayesVisitor) v;
hv.visit (this) ;

} catch (ClassCastException e) { }
}

+ visit(Hayes)

«interface»
HayesVisitor

+ visit(Zoom)

«interface»
ZoomVisitor

+ visit(Ernie)

«interface»
ErnieVisitor

392
www.EBooksWorld.ir

Acyclic Visitor

Listing 28-8

Modem.java

public interface Modem
{
 public void dial(String pno);
 public void hangup();
 public void send(char c);
 public char recv();
 public void accept(ModemVisitor v);
}

Listing 28-9

ModemVisitor.java

public interface ModemVisitor
{
}

Listing 28-10

ErnieModemVisitor.java

public interface ErnieModemVisitor
{
 public void visit(ErnieModem m);
}

Listing 28-11

HayesModemVisitor.java

public interface HayesModemVisitor
{
 public void visit(HayesModem m);
}

Listing 28-12

ZoomModemVisitor.java

public interface ZoomModemVisitor
{
 public void visit(ZoomModem m);
}

Listing 28-13

ErnieModem.java

public class ErnieModem implements Modem
{
 public void dial(String pno){}
 public void hangup(){}
 public void send(char c){}
 public char recv() {return 0;}
 public void accept(ModemVisitor v)
 {
 try
 {
 ErnieModemVisitor ev = (ErnieModemVisitor)v;

393
www.EBooksWorld.ir

Chapter 28 • Visitor

 ev.visit(this);
 }
 catch (ClassCastException e)
 {
 }
 }

 String internalPattern = null;
}

Listing 28-14

HayesModem.java

public class HayesModem implements Modem
{
 public void dial(String pno){}
 public void hangup(){}
 public void send(char c){}
 public char recv() {return 0;}
 public void accept(ModemVisitor v)
 {
 try
 {
 HayesModemVisitor hv = (HayesModemVisitor)v;
 hv.visit(this);
 }
 catch (ClassCastException e)
 {
 }
 }

 String configurationString = null;
}

Listing 28-15

ZoomModem.java

public class ZoomModem implements Modem
{
 public void dial(String pno){}
 public void hangup(){}
 public void send(char c){}
 public char recv() {return 0;}
 public void accept(ModemVisitor v)
 {
 try
 {
 ZoomModemVisitor zv = (ZoomModemVisitor)v;
 zv.visit(this);
 }
 catch(ClassCastException e)
 {
 }
 }

 int configurationValue = 0;
}

394
www.EBooksWorld.ir

Acyclic Visitor

Listing 28-16

TestModemVisitor.java

import junit.framework.*;
public class TestModemVisitor extends TestCase
{
 public TestModemVisitor(String name)
 {
 super(name);
 }

 private UnixModemConfigurator v;
 private HayesModem h;
 private ZoomModem z;
 private ErnieModem e;

 public void setUp()
 {
 v = new UnixModemConfigurator();
 h = new HayesModem();
 z = new ZoomModem();
 e = new ErnieModem();
 }

 public void testHayesForUnix()
 {
 h.accept(v);
 assertEquals("&s1=4&D=3", h.configurationString);
 }

 public void testZoomForUnix()
 {
 z.accept(v);
 assertEquals(42, z.configurationValue);
 }

 public void testErnieForUnix()
 {
 e.accept(v);
 assertEquals("C is too slow", e.internalPattern);
 }
}

This breaks the dependency cycle and makes it easier to add visited derivatives and to do incremental compi-
lations. Unfortunately, it also makes the solution much more complex. Worse still, the timing of the cast can
depend on the width and breadth of the visited hierarchy and is therefore hard to characterize.

For hard, real-time systems the large and unpredictable execution time of the cast may make the ACYCLIC

VISITOR inappropriate. For other systems, the complexity of the pattern may disqualify it. But for those systems
in which the visited hierarchy is volatile, and incremental compilation is important, this pattern can be a good
option.

395
www.EBooksWorld.ir

Chapter 28 • Visitor

ACYCLIC VISITOR Is Like a Sparse Matrix

Just as the VISITOR pattern created a matrix of functions, with the visited type on one axis and the function to be
performed on the other. ACYCLIC VISITOR creates the a sparse matrix. The visitor classes do not have to implement
visit functions for each visited derivative. For example, if Ernie modems cannot be configured for UNIX, then
the UnixModemConfigurator will not implement the ErnieVisitor interface. Thus the ACYCLIC VISITOR pat-
tern allows us to ignore certain combinations of derivatives and functions. This can sometimes be a useful
advantage.

Using VISITOR in Report Generators

A very common use of the VISITOR pattern is to walk large data structures and generate reports. This keeps the
data-structure objects from having any report-generation code. New reports can be added by adding new VISITORs,
rather than by changing the code in the data structures. This means that reports can be placed in separate compo-
nents and individually deployed only to those customers who need them.

Consider a simple data structure that represents a bill of materials. (See Figure 28-4.) There is an unlimited
number of reports that we could generate from this data structure. For example, we could generate a report of the
total cost of an assembly, or we could generate a report that listed all the piece parts in an assembly.

Each of these reports could be generated by methods in the Part class. For example, getExplodedCost
and getPieceCount could be added to the Part class. These methods would be implemented in each derivative
of Part, such that the appropriate reporting was accomplished. Unfortunately, that would mean that every new
report that the customers wanted would force us to change the Part hierarchy.

The Single Responsibility Principle (SRP) told us that we want to separate code that changes for different
reasons. The Part hierarchy may change as new kinds of parts are needed. However, it should not change because
new kinds of reports are needed. Thus we’d like to separate the reports from the Part hierarchy. The VISITOR

structure we saw in Figure 28-4 shows how this can be accomplished.
Each new report can be written as a new visitor. We write the accept function of Assembly to visit the vis-

itor and also call accept on all the contained Part instances. Thus, the entire tree is traversed. For each node in
the tree, the appropriate visit function is called on the report. The report accumulates the necessary statistics.
The report can then be queried for the interesting data and presented to the user.

This structure allows us to create an unlimited number of reports without affecting the Part hierarchy at all.
Moreover, each report can be compiled and distributed independently of all the others. This is nice. Listings 28-17
through 28-23 show how this looks in Java.

Figure 28-4 Bill-Of-Materials Report-Generator Structure

Assembly

- partNumber
- description

PiecePart

- cost
- partNumber
- description

PartVisitor

+ visit(Assembly)
+ visit(PiecePart)

PartCount
Visitor

ExplodedCost
Visitor

+ accept(PartVisitor)

Part
«interface»

1..*

396
www.EBooksWorld.ir

Acyclic Visitor

Listing 28-17

Part.java

public interface Part
{
 public String getPartNumber();
 public String getDescription();
 public void accept(PartVisitor v);
}

Listing 28-18

Assembly.java

import java.util.*;

public class Assembly implements Part
{
 public Assembly(String partNumber, String description)
 {
 itsPartNumber = partNumber;
 itsDescription = description;
 }

 public void accept(PartVisitor v)
 {
 v.visit(this);
 Iterator i = getParts();
 while (i.hasNext())
 {
 Part p = (Part)i.next();
 p.accept(v);
 }
 }
 public void add(Part part)
 {
 itsParts.add(part);
 }

 public Iterator getParts()
 {
 return itsParts.iterator();
 }

 public String getPartNumber()
 {
 return itsPartNumber;
 }

 public String getDescription()
 {
 return itsDescription;
 }

 private List itsParts = new LinkedList();
 private String itsPartNumber;
 private String itsDescription;
}

397
www.EBooksWorld.ir

Chapter 28 • Visitor

Listing 28-19

PiecePart.java

public class PiecePart implements Part
{
 public PiecePart(String partNumber,
 String description,
 double cost)
 {
 itsPartNumber = partNumber;
 itsDescription = description;
 itsCost = cost;
 }

 public void accept(PartVisitor v)
 {
 v.visit(this);
 }

 public String getPartNumber()
 {
 return itsPartNumber;
 }

 public String getDescription()
 {
 return itsDescription;
 }

 public double getCost()
 {
 return itsCost;
 }

 private String itsPartNumber;
 private String itsDescription;
 private double itsCost;
}

Listing 28-20

PartVisitor.java

public interface PartVisitor
{
 public void visit(PiecePart pp);
 public void visit(Assembly a);
}

Listing 28-21

ExplodedCostVisitor.java

public class ExplodedCostVisitor implements PartVisitor
{
 private double cost = 0;
 public double cost() {return cost;}

398
www.EBooksWorld.ir

Acyclic Visitor

 public void visit(PiecePart p)
 {cost += p.getCost();}

 public void visit(Assembly a) {}

}

Listing 28-22

PartCountVisitor.java

import java.util.*;

public class PartCountVisitor implements PartVisitor
{
 public void visit(PiecePart p)
 {
 itsPieceCount++;
 String partNumber = p.getPartNumber();
 int partNumberCount = 0;
 if (itsPieceMap.containsKey(partNumber))
 {
 Integer carrier = (Integer)itsPieceMap.get(partNumber);
 partNumberCount = carrier.intValue();
 }
 partNumberCount++;
 itsPieceMap.put(partNumber, new Integer(partNumberCount));
 }

 public void visit(Assembly a)
 {
 }

 public int getPieceCount() {return itsPieceCount;}
 public int getPartNumberCount() {return itsPieceMap.size();}
 public int getCountForPart(String partNumber)
 {
 int partNumberCount = 0;
 if (itsPieceMap.containsKey(partNumber))
 {
 Integer carrier = (Integer)itsPieceMap.get(partNumber);
 partNumberCount = carrier.intValue();
 }
 return partNumberCount;
 }

 private int itsPieceCount = 0;
 private HashMap itsPieceMap = new HashMap();

}

Listing 28-23

TestBOMReport.java

import junit.framework.*;
import java.util.*;

399
www.EBooksWorld.ir

Chapter 28 • Visitor

public class TestBOMReport extends TestCase
{
 public TestBOMReport(String name)
 {
 super(name);
 }

 private PiecePart p1;
 private PiecePart p2;
 private Assembly a;

 public void setUp()
 {
 p1 = new PiecePart("997624", "MyPart", 3.20);
 p2 = new PiecePart("7734", "Hell", 666);
 a = new Assembly("5879", "MyAssembly");
 }

 public void testCreatePart()
 {
 assertEquals("997624", p1.getPartNumber());
 assertEquals("MyPart", p1.getDescription());
 assertEquals(3.20, p1.getCost(), .01);
 }

 public void testCreateAssembly()
 {
 assertEquals("5879", a.getPartNumber());
 assertEquals("MyAssembly", a.getDescription());
 }

 public void testAssembly()
 {
 a.add(p1);
 a.add(p2);
 Iterator i = a.getParts();
 PiecePart p = (PiecePart)i.next();
 assertEquals(p, p1);
 p = (PiecePart)i.next();
 assertEquals(p, p2);
 assert(i.hasNext() == false);
 }

 public void testAssemblyOfAssemblies()
 {
 Assembly subAssembly = new Assembly("1324", "SubAssembly");
 subAssembly.add(p1);
 a.add(subAssembly);

 Iterator i = a.getParts();
 assertEquals(subAssembly, i.next());
 }

 private boolean p1Found = false;
 private boolean p2Found = false;
 private boolean aFound = false;

400
www.EBooksWorld.ir

Acyclic Visitor

 public void testVisitorCoverage()

 {

 a.add(p1);

 a.add(p2);

 a.accept(new PartVisitor(){

 public void visit(PiecePart p)

 {

 if (p == p1)

 p1Found = true;

 else if (p == p2)

 p2Found = true;

 }

 public void visit(Assembly assy)

 {

 if (assy == a)

 aFound = true;

 }

 });

 assert(p1Found);

 assert(p2Found);

 assert(aFound);

 }

 private Assembly cellphone;

 void setUpReportDatabase()

 {

 cellphone = new Assembly("CP-7734", "Cell Phone");

 PiecePart display = new PiecePart("DS-1428", "LCD Display", 14.37);

 PiecePart speaker = new PiecePart("SP-92", "Speaker", 3.50);

 PiecePart microphone = new PiecePart("MC-28", "Microphone", 5.30);

 PiecePart cellRadio = new PiecePart("CR-56", "Cell Radio", 30);

 PiecePart frontCover = new PiecePart("FC-77", "Front Cover", 1.4);

 PiecePart backCover = new PiecePart("RC-77", "RearCover", 1.2);

 Assembly keypad = new Assembly("KP-62", "Keypad");

 Assembly button = new Assembly("B52", "Button");

 PiecePart buttonCover = new PiecePart("CV-15", "Cover", .5);

 PiecePart buttonContact = new PiecePart("CN-2", "Contact", 1.2);

 button.add(buttonCover);

 button.add(buttonContact);

 for (int i=0; i<15; i++)

 keypad.add(button);

 cellphone.add(display);

 cellphone.add(speaker);

 cellphone.add(microphone);

401
www.EBooksWorld.ir

Chapter 28 • Visitor

 cellphone.add(cellRadio);
 cellphone.add(frontCover);
 cellphone.add(backCover);
 cellphone.add(keypad);
 }

 public void testExplodedCost()
 {
 setUpReportDatabase();
 ExplodedCostVisitor v = new ExplodedCostVisitor();
 cellphone.accept(v);
 assertEquals(81.27, v.cost(), .001);
 }

 public void testPartCount()
 {
 setUpReportDatabase();
 PartCountVisitor v = new PartCountVisitor();
 cellphone.accept(v);
 assertEquals(36, v.getPieceCount());
 assertEquals(8, v.getPartNumberCount());
 assertEquals("DS-1428", 1, v.getCountForPart("DS-1428"));
 assertEquals("SP-92", 1, v.getCountForPart("SP-92"));
 assertEquals("MC-28", 1, v.getCountForPart("MC-28"));
 assertEquals("CR-56", 1, v.getCountForPart("CR-56"));
 assertEquals("RC-77", 1, v.getCountForPart("RC-77"));
 assertEquals("CV-15", 15, v.getCountForPart("CV-15"));
 assertEquals("CN-2", 15, v.getCountForPart("CN-2"));
 assertEquals("Bob", 0, v.getCountForPart("Bob"));
 }
}

Other Uses of VISITOR

In general, the Visitor pattern can be used in any application where there is a data structure that needs
to be interpreted many different ways. Compilers often create intermediate data structures that repre-
sent syntactically correct source code. These data structures are then used to generate compiled code.
One could imagine visitors for each different processor or optimization scheme. One could also imag-
ine a visitor that converted the intermediate data structure into a cross-reference listing or even a UML
diagram.

Many applications make use of configuration data structures. One could imagine the different sub-
systems of the application initializing themselves from the configuration data by walking it with their own
particular visitors.

In every case where visitors are used, the data structure being used is independent of the uses to which
it is being put. New visitors can be created, existing visitors can be changed, and all can be redeployed to
installed sites without the recompilation, or redeployment of the existing data structures. This is the power of
the VISITOR.

402
www.EBooksWorld.ir

Decorator

DECORATOR5

The visitor gave us a way to add methods to existing hierarchies without changing those hierarchies. Another pat-
tern that accomplishes this is the DECORATOR.

Consider, once again, the Modem hierarchy in Figure 28-1. Imagine that we have an application which has
many users. Each user, sitting at his computer, can ask the system to call out to another computer using the com-
puter’s modem. Some of the users like to hear their modems dial. Others like their modems to be silent.

We could implement this by querying the user preferences at every location in the code where the modem is
dialed. If the user wants to hear the modem, we set the speaker volume high. Otherwise, we turn it off.

...
Modem m = user.getModem();
if (user.wantsLoudDial())
 m.setVolume(11); // its one more than 10, isn’t it?
m.dial(...);
...

The spectre of seeing this stretch of code duplicated hundreds of times throughout the application conjures images
of 80-hour weeks and heinous debugging sessions. It is something to be avoided.

Another option would be to set a flag in the modem object itself and have the dial method inspect it and set
the volume accordingly.

...
public class HayesModem implements Modem
{
 private boolean wantsLoudDial = false;

 public void dial(...)
 {
 if (wantsLoudDial)
 {
 setVolume(11);
 }
 ...
 }
 ...
}

This is better, but it must still be duplicated for every derivative of Modem. Authors of new derivatives of Modem
must remember to replicate this code. Depending on programmers memories is pretty risky business.

We could resolve this with the TEMPLATE METHOD6 pattern by changing Modem from an interface to a class,
having it hold the wantsLoudDial variable, and having it test that variable in the dial function before it calls the
dialForReal function.

...
public abstract class Modem
{
 private boolean wantsLoudDial = false;

 public void dial(...)

5. [GOF95].

6. See “Template Method” on page 162.

403
www.EBooksWorld.ir

Chapter 28 • Visitor

 {
 if (wantsLoudDial)
 {
 setVolume(11);
 }
 dialForReal(...)
 }

 public abstract void dialForReal(...);
}

This is better still, but why should Modem be affected by the whims of the user in this way? Why should Modem
know about loud dialing. Must it then be modified every time the user has some other odd request, like logging out
before hangup?

Once again the Common-Closure Principle (CCP) comes into play. We want to separate those things that
change for different reasons. We can also invoke the Single-Responsibility Principle (SRP) since the need to dial
loudly has nothing to do with the intrinsic functions of Modem and should therefore not be part of Modem.

DECORATOR solves the issue by creating a completely new class named LoudDialModem. LoudDialModem
derives from Modem and delegates to a contained instance of Modem. It catches the dial function and sets the vol-
ume high before delegating. Figure 28-5 shows the structure.

Now the decision to dial loudly can be made in one place. At the place in the code where the user sets his
preferences, if he requests loud dialing, a LoudDialModem can be created, and the user’s modem can be passed
into it. LoudDialModem will delegate all calls made to it to the user’s modem, so the user won’t notice any differ-
ence. The dial method, however, will first set the volume high before it delegates to the user’s modem. The
LoudDialModem can then become the user’s modem without anybody else in the system being affected. Listings
28-24 through 28-27 show the code.

Listing 28-24

Modem.java

public interface Modem
{
 public void dial(String pno);

Figure 28-5 DECORATOR: LoudDialModem

HayesModem

ZoomModem
LoudDialModem

ErnieModem

Modem
«interface»

+ dial(...)
+ setVolume(int)

itsModem

«delegates»

public void dial(...)
{

itsModem.setVolume(11);
itsModem.dial(...);

}

404
www.EBooksWorld.ir

Decorator

 public void setSpeakerVolume(int volume);
 public String getPhoneNumber();
 public int getSpeakerVolume();
}

Listing 28-25

HayesModem.java

public class HayesModem implements Modem
{
 public void dial(String pno)
 {
 itsPhoneNumber = pno;
 }

 public void setSpeakerVolume(int volume)
 {
 itsSpeakerVolume = volume;
 }

 public String getPhoneNumber()
 {
 return itsPhoneNumber;
 }

 public int getSpeakerVolume()
 {
 return itsSpeakerVolume;
 }

 private String itsPhoneNumber;
 private int itsSpeakerVolume;
}

Listing 28-26

LoudDialModem.java

public class LoudDialModem implements Modem
{
 public LoudDialModem(Modem m)
 {
 itsModem = m;
 }

 public void dial(String pno)
 {
 itsModem.setSpeakerVolume(10);
 itsModem.dial(pno);
 }

 public void setSpeakerVolume(int volume)
 {
 itsModem.setSpeakerVolume(volume);
 }

405
www.EBooksWorld.ir

Chapter 28 • Visitor

 public String getPhoneNumber()
 {
 return itsModem.getPhoneNumber();
 }

 public int getSpeakerVolume()
 {
 return itsModem.getSpeakerVolume();
 }

 private Modem itsModem;
}

Listing 28-27

ModemDecoratorTest.java

import junit.framework.*;

public class ModemDecoratorTest extends TestCase
{
 public ModemDecoratorTest(String name)
 {
 super(name);
 }

 public void testCreateHayes()
 {
 Modem m = new HayesModem();
 assertEquals(null, m.getPhoneNumber());
 m.dial("5551212");
 assertEquals("5551212", m.getPhoneNumber());
 assertEquals(0, m.getSpeakerVolume());
 m.setSpeakerVolume(10);
 assertEquals(10, m.getSpeakerVolume());
 }

 public void testLoudDialModem()
 {
 Modem m = new HayesModem();
 Modem d = new LoudDialModem(m);
 assertEquals(null, d.getPhoneNumber());
 assertEquals(0, d.getSpeakerVolume());
 d.dial("5551212");
 assertEquals("5551212", d.getPhoneNumber());
 assertEquals(10, d.getSpeakerVolume());

 }
}

Multiple Decorators

Sometimes two or more decorators may exist for the same hierarchy. For example, we may wish to decorate the
Modem hierarchy with LogoutExitModem, which sends the string ‘exit’ whenever the Hangup method is
called. This second decorator will have to duplicate all the delegation code that we have already written in
LoudDialModem. We can eliminate this duplicate code by creating a new class called ModemDecorator that

406
www.EBooksWorld.ir

Decorator

supplies all the delegation code. Then the actual decorators can simply derive from ModemDecorator and over-
ride only those methods that they need to. Figure 28-6, Listing 28-28, and Listing 28-29 show the structure.

Listing 28-28

ModemDecorator.java

public class ModemDecorator implements Modem
{
 public ModemDecorator(Modem m)
 {
 itsModem = m;
 }

 public void dial(String pno)
 {
 itsModem.dial(pno);
 }

 public void setSpeakerVolume(int volume)
 {
 itsModem.setSpeakerVolume(volume);
 }

 public String getPhoneNumber()
 {
 return itsModem.getPhoneNumber();
 }

 public int getSpeakerVolume()
 {
 return itsModem.getSpeakerVolume();
 }

Figure 28-6 ModemDecorator

HayesModem

ZoomModem

Modem
Decorator

ErnieModem

Modem
«interface»

+ dial(...)
+ setVolume(int)

itsModem

«delegates»

public void dial(...)
{
 itsModem.setVolume(11);
 itsModem.dial(...);
}

LoudDialModem

407
www.EBooksWorld.ir

Chapter 28 • Visitor

 protected Modem getModem()
 {
 return itsModem;
 }

 private Modem itsModem;
}

Listing 28-29
public class LoudDialModem extends ModemDecorator
{
 public LoudDialModem(Modem m)
 {
 super(m);
 }

 public void dial(String pno)
 {
 getModem().setSpeakerVolume(10);
 getModem().dial(pno);
 }

}

EXTENSION OBJECT

Still another way to add functionality to a hierarchy without changing the hierarchy is to employ the EXTENSION

OBJECT7 pattern. This pattern is more complex than the others, but it is also much more powerful and flexible.
Each object in the hierarchy maintains a list of special extension objects. Each object also provides a method that
allows the extension object to be looked up by name. The extension object provides methods that manipulate the
original hierarchy object.

For example, let’s assume that we have a bill-of-materials system again. We need to develop the ability for
each object in this hierarchy to create an XML representation of itself. We could put toXML methods in the hierar-
chy, but this would violate the SRP. It may be that we don’t want BOM stuff and XML stuff in the same class. We
could create XML using a VISITOR, but that doesn’t allow us to separate the XML generating code for each type of
BOM object. In a VISITOR, all the XML generating code for each BOM class would be in the same VISITOR object.
What if we want to separate the XML generation for each different BOM object into its own class?

EXTENSION OBJECT provides a nice way to accomplish this goal. The code in Listings 28-30 through 28-41
shows the BOM hierarchy with two different kinds of extension object. One kind of extension object converts
BOM objects into XML. The other kind of extension object converts BOM objects into CSV (comma-separated
value) strings. The first kind is accessed by getExtension(“XML”) and the second by getExtension(“CSV”).
The structure is shown in Figure 28-7 and was taken from the completed code. The «marker» stereotype denotes a
marker interface (i.e., an interface with no methods).

It is very important to understand that I did not simply write this code in Listings 28-30 through 28-41 from
scratch. Rather, I evolved the code from test case to test case. The first source file, Listing 28-30, shows all the test
cases. They were written in the order shown. Each test case was written before there was any code that could make
it pass. Once each test case was written and failing, the code that made it pass was written. The code was never
more complicated than necessary to make the existing test cases pass. Thus, the code evolved in tiny increments

7. [PLOPD3], p. 79.

408
www.EBooksWorld.ir

Extension Object

from working base to working base. I knew I was trying to build the EXTENSION OBJECT pattern, and I used that to
guide the evolution.

Listing 28-30

TestBOMXML.java

import junit.framework.*;
import java.util.*;
import org.jdom.*;

public class TestBOMXML extends TestCase
{
 public TestBOMXML(String name)
 {
 super(name);
 }

 private PiecePart p1;
 private PiecePart p2;
 private Assembly a;

 public void setUp()
 {
 p1 = new PiecePart("997624", "MyPart", 3.20);
 p2 = new PiecePart("7734", "Hell", 666);
 a = new Assembly("5879", "MyAssembly");
 }

 public void testCreatePart()
 {
 assertEquals("997624", p1.getPartNumber());
 assertEquals("MyPart", p1.getDescription());

Figure 28-7 Extension Object

PiecePart

Assembly

XMLPiecePart
Extension

XMLAssembly
Extension

CSVPiecePart
Extension

CSVAssembly
Extension

+ getXMLElement()

«interface»
XMLPartExtension

+ getExtension(String)
+ addExtension(String, PartException)

Part

+ getCSV()

«interface»
CSVPartExtension

«marker»
BadPartExtension

«HashMap»

«marker»
PartExtension(abstract) 0..*

0..*

409
www.EBooksWorld.ir

Chapter 28 • Visitor

 assertEquals(3.20, p1.getCost(), .01);

 }

 public void testCreateAssembly()

 {

 assertEquals("5879", a.getPartNumber());

 assertEquals("MyAssembly", a.getDescription());

 }

 public void testAssembly()

 {

 a.add(p1);

 a.add(p2);

 Iterator i = a.getParts();

 PiecePart p = (PiecePart)i.next();

 assertEquals(p, p1);

 p = (PiecePart)i.next();

 assertEquals(p, p2);

 assert(i.hasNext() == false);

 }

 public void testAssemblyOfAssemblies()

 {

 Assembly subAssembly = new Assembly("1324", "SubAssembly");

 subAssembly.add(p1);

 a.add(subAssembly);

 Iterator i = a.getParts();

 assertEquals(subAssembly, i.next());

 }

 public void testPiecePart1XML()

 {

 PartExtension e = p1.getExtension("XML");

 XMLPartExtension xe = (XMLPartExtension)e;

 Element xml = xe.getXMLElement();

 assertEquals("PiecePart", xml.getName());

 assertEquals("997624",xml.getChild("PartNumber").getTextTrim());

 assertEquals("MyPart", xml.getChild("Description").getTextTrim());

 assertEquals(3.2, Double.parseDouble(xml.getChild("Cost").getTextTrim()), .01);

 }

 public void testPiecePart2XML()

 {

 PartExtension e = p2.getExtension("XML");

 XMLPartExtension xe = (XMLPartExtension)e;

 Element xml = xe.getXMLElement();

 assertEquals("PiecePart", xml.getName());

 assertEquals("7734", xml.getChild("PartNumber").getTextTrim());

410
www.EBooksWorld.ir

Extension Object

 assertEquals("Hell", xml.getChild("Description").getTextTrim());
 assertEquals(666, Double.parseDouble(xml.getChild("Cost").getTextTrim()), .01);
 }

 public void testSimpleAssemblyXML()
 {
 PartExtension e = a.getExtension("XML");
 XMLPartExtension xe = (XMLPartExtension)e;
 Element xml = xe.getXMLElement();
 assertEquals("Assembly", xml.getName());
 assertEquals("5879", xml.getChild("PartNumber").getTextTrim());
 assertEquals("MyAssembly", xml.getChild("Description").getTextTrim());
 Element parts = xml.getChild("Parts");
 List partList = parts.getChildren();
 assertEquals(0, partList.size());
 }

 public void testAssemblyWithPartsXML()
 {
 a.add(p1);
 a.add(p2);
 PartExtension e = a.getExtension("XML");
 XMLPartExtension xe = (XMLPartExtension)e;
 Element xml = xe.getXMLElement();
 assertEquals("Assembly", xml.getName());
 assertEquals("5879", xml.getChild("PartNumber").getTextTrim());
 assertEquals("MyAssembly", xml.getChild("Description").getTextTrim());

 Element parts = xml.getChild("Parts");
 List partList = parts.getChildren();
 assertEquals(2, partList.size());

 Iterator i = partList.iterator();
 Element partElement = (Element)i.next();
 assertEquals("PiecePart", partElement.getName());
 assertEquals("997624", partElement.getChild("PartNumber").getTextTrim());

 partElement = (Element)i.next();
 assertEquals("PiecePart", partElement.getName());
 assertEquals("7734", partElement.getChild("PartNumber").getTextTrim());
 }

 public void testPiecePart1toCSV()
 {
 PartExtension e = p1.getExtension("CSV");
 CSVPartExtension ce = (CSVPartExtension)e;
 String csv = ce.getCSV();
 assertEquals("PiecePart,997624,MyPart,3.2", csv);
 }

 public void testPiecePart2toCSV()
 {
 PartExtension e = p2.getExtension("CSV");
 CSVPartExtension ce = (CSVPartExtension)e;
 String csv = ce.getCSV();

411
www.EBooksWorld.ir

Chapter 28 • Visitor

 assertEquals("PiecePart,7734,Hell,666.0", csv);

 }

 public void testSimpleAssemblyCSV()

 {

 PartExtension e = a.getExtension("CSV");

 CSVPartExtension ce = (CSVPartExtension)e;

 String csv = ce.getCSV();

 assertEquals("Assembly,5879,MyAssembly", csv);

 }

 public void testAssemblyWithPartsCSV()

 {

 a.add(p1);

 a.add(p2);

 PartExtension e = a.getExtension("CSV");

 CSVPartExtension ce = (CSVPartExtension)e;

 String csv = ce.getCSV();

 assertEquals("Assembly,5879,MyAssembly," +

 "{PiecePart,997624,MyPart,3.2}," +

 "{PiecePart,7734,Hell,666.0}"

 , csv);

 }

 public void testBadExtension()

 {

 PartExtension pe = p1.getExtension("ThisStringDoesn'tMatchAnyException");

 assert(pe instanceof BadPartExtension);

 }

}

Listing 28-31

Part.java

import java.util.*;

public abstract class Part

{

 HashMap itsExtensions = new HashMap();

 public abstract String getPartNumber();

 public abstract String getDescription();

 public void addExtension(String extensionType, PartExtension extension)

 {

 itsExtensions.put(extensionType, extension);

 }

412
www.EBooksWorld.ir

Extension Object

 public PartExtension getExtension(String extensionType)

 {

 PartExtension pe = (PartExtension) itsExtensions.get(extensionType);

 if (pe == null)

 pe = new BadPartExtension();

 return pe;

 }

}

Listing 28-32

PartExtension.java

public interface PartExtension

{

}

Listing 28-33

PiecePart.java

public class PiecePart extends Part

{

 public PiecePart(String partNumber, String description, double cost)

 {

 itsPartNumber = partNumber;

 itsDescription = description;

 itsCost = cost;

 addExtension("CSV", new CSVPiecePartExtension(this));

 addExtension("XML", new XMLPiecePartExtension(this));

 }

 public String getPartNumber()

 {

 return itsPartNumber;

 }

 public String getDescription()

 {

 return itsDescription;

 }

 public double getCost()

 {

 return itsCost;

 }

 private String itsPartNumber;

 private String itsDescription;

 private double itsCost;

}

413
www.EBooksWorld.ir

Chapter 28 • Visitor

Listing 28-34

Assembly.java

import java.util.*;

public class Assembly extends Part

{

 public Assembly(String partNumber, String description)

 {

 itsPartNumber = partNumber;

 itsDescription = description;

 addExtension("CSV", new CSVAssemblyExtension(this));

 addExtension("XML", new XMLAssemblyExtension(this));

 }

 public void add(Part part)

 {

 itsParts.add(part);

 }

 public Iterator getParts()

 {

 return itsParts.iterator();

 }

 public String getPartNumber()

 {

 return itsPartNumber;

 }

 public String getDescription()

 {

 return itsDescription;

 }

 private List itsParts = new LinkedList();

 private String itsPartNumber;

 private String itsDescription;

}

Listing 28-35

XMLPartExtension.java

import org.jdom.*;

public interface XMLPartExtension extends PartExtension

{

 public Element getXMLElement();

}

414
www.EBooksWorld.ir

Extension Object

Listing 28-36

XMLPiecePartException.java

import org.jdom.*;

public class XMLPiecePartExtension implements XMLPartExtension
{
 public XMLPiecePartExtension(PiecePart part)
 {
 itsPiecePart = part;
 }

 public Element getXMLElement()
 {
 Element e = new Element("PiecePart");
 e.addContent(
 new Element("PartNumber").setText(
 itsPiecePart.getPartNumber()));
 e.addContent(
 new Element("Description").setText(
 itsPiecePart.getDescription()));
 e.addContent(
 new Element("Cost").setText(
 Double.toString(itsPiecePart.getCost())));
 return e;
 }

 private PiecePart itsPiecePart = null;
}

Listing 28-37

XMLAssemblyExtension.java

import org.jdom.*;
import java.util.*;

public class XMLAssemblyExtension implements XMLPartExtension
{
 public XMLAssemblyExtension(Assembly assembly)
 {
 itsAssembly = assembly;
 }

 public Element getXMLElement()
 {
 Element e = new Element("Assembly");
 e.addContent(new Element("PartNumber").setText(itsAssembly.getPartNumber()));
 e.addContent(new Element("Description").setText(itsAssembly.getDescription()));
 Element parts = new Element("Parts");
 e.addContent(parts);
 Iterator i = itsAssembly.getParts();
 while (i.hasNext())
 {
 Part p = (Part) i.next();

415
www.EBooksWorld.ir

Chapter 28 • Visitor

 PartExtension pe = p.getExtension("XML");
 XMLPartExtension xpe = (XMLPartExtension)pe;
 parts.addContent(xpe.getXMLElement());
 }
 return e;
 }

 private Assembly itsAssembly = null;
}

Listing 28-38

CSVPartExtension.java

public interface CSVPartExtension extends PartExtension
{
 public String getCSV();
}

Listing 28-39

CSVPiecePartExtension.java

public class CSVPiecePartExtension implements CSVPartExtension
{
 private PiecePart itsPiecePart = null;

 public CSVPiecePartExtension(PiecePart part)
 {
 itsPiecePart = part;
 }

 public String getCSV()
 {
 StringBuffer b = new StringBuffer("PiecePart,");
 b.append(itsPiecePart.getPartNumber());
 b.append(",");
 b.append(itsPiecePart.getDescription());
 b.append(",");
 b.append(itsPiecePart.getCost());
 return b.toString();
 }
}

Listing 28-40

CSVAssemblyExtension.java

import java.util.Iterator;

public class CSVAssemblyExtension implements CSVPartExtension
{
 private Assembly itsAssembly = null;

 public CSVAssemblyExtension(Assembly assy)
 {
 itsAssembly = assy;
 }

416
www.EBooksWorld.ir

Extension Object

 public String getCSV()
 {
 StringBuffer b = new StringBuffer("Assembly,");
 b.append(itsAssembly.getPartNumber());
 b.append(",");
 b.append(itsAssembly.getDescription());

 Iterator i = itsAssembly.getParts();
 while (i.hasNext())
 {
 Part p = (Part) i.next();
 CSVPartExtension ce = (CSVPartExtension)p.getExtension("CSV");
 b.append(",{");
 b.append(ce.getCSV());
 b.append("}");
 }
 return b.toString();
 }
}

Listing 28-41

BadPartExtension.java

public class BadPartExtension implements PartExtension
{
}

Notice that the extension objects are loaded into each BOM object by that object’s constructor. This
means that, to some extent, the BOM objects still depend on the XML and CSV classes. If even this tenuous
dependency needs to be broken, we could create a FACTORY8 object that creates the BOM objects and loads
their extensions.

The fact that the extension objects can be loaded into the object creates a great deal of flexibility. Certain
extension objects can be inserted or deleted from objects depending on the state of the system. It would be very
easy to get carried away with this flexibility. For the most part, you probably won’t find it necessary. Indeed, the
original implementation of PiecePart.getExtention(String extensionType) looked like this.

public PartExtension getExtension(String extensionType)

{
 if (extensionType.equals(“XML”))
 return new XMLPiecePartExtension(this);

 else if (extensionType.equals(“CSV”))
 return new XMLAssemblyExtension(this);

 return new BadPartExtension();
}

I wasn’t particularly thrilled with this because it was virtually identical to the code in Assembly.get-
Extension. The HashMap solution in Part avoids this duplication and is just simpler. Anyone reading it will
know exactly how extension objects are accessed.

8. See “Factory” on page 269.

417
www.EBooksWorld.ir

Chapter 28 • Visitor

Conclusion
The VISITOR family of patterns provides us with a number of ways to modify the behavior of a hierarchy of classes
without having to change those classes. Thus, they help us maintain the OCP. They also provide mechanisms for
segregating different kinds of functionality, thus keeping classes from getting cluttered with many different func-
tions. As such, they help us maintain the CCP. It should be clear that the SRP, LSP, and DIP are also applied to the
structure of the VISITOR family.

The VISITOR patterns are seductive. It is easy to get carried away with them. Use them when they help, but
maintain a healthy skepticism about their necessity. Often, something that can be solved with a VISITOR can also
be solved by something simpler.

Reminder

Now that you’ve read this chapter, you may wish to go back to Chapter 9, page 107, and solve the problem of
ordering the shapes.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.
2. Martin, Robert C., et al. Pattern Languages of Program Design 3. Reading, MA: Addison–Wesley, 1998.

418
www.EBooksWorld.ir

29

STATE

A state without the means of some change is without the means of its conservation.

—Edmund Burke (1729–1797)

Finite state automata are among the most useful abstractions in the software arsenal. They provide a simple and
elegant way to explore and define the behavior of a complex system. They also provide a powerful implementation
strategy that is easy to understand and easy to modify. I use them in all levels of a system, from controlling the
high-level GUI1 to the lowest-level communication protocols. They are almost universally applicable.

Overview of Finite State Automata
A simple finite state machine (FSM) can be found in the operation of a subway turnstile. This is the device that
controls the gate through which passengers pass to gain access to the subway trains. Figure 29-1 shows the begin-
nings of the FSM that controls the subway turnstile. This diagram is known as a state transition diagram, or STD.2

1. See “The Taskmaster Architecture” on page 462.

2. See “States and Internal Transitions” on page 493, “Transitions between states” on page 494, and “Nested States” on page 494.

From Chapter 29 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

419
www.EBooksWorld.ir

Chapter 29 • State

STDs are composed of at least four parts. The bubbles are called states. Connecting the states are arrows
called transitions. The transitions are labeled with the name of an event followed by the name of an action. The
STD in Figure 29-1 is read as follows:

• If the machine is in the Locked state and we get a coin event, then we transition to the Unlocked state and
invoke the unlock action.

• If the machine is in the Unlocked state and we get a pass event, then we transition to the Locked state and
invoke the lock action.

These two sentences completely describe the diagram in Figure 29-1. Each sentence describes one transition
arrow in terms of four elements: the starting state, the event that triggers the transition, the ending state, and the
action to be performed. Indeed these transition sentences can be reduced to a simple table called a state transition
table (STT). It might look like this:

Locked coin Unlocked unlock
Unlocked Pass Locked lock

How does this machine work? Presume that the FSM begins its life in the Locked state. A passenger walks
up to the turnstile and deposits a coin. This causes the software to receive the coin event. The first transition in the
STT says that if we are in the Locked state and we get a coin event, then we will transition to the Unlocked state
and invoke the unlock action. So the software changes its state to Unlocked and calls the unlock function. The
passenger then passes through the gate causing the software to detect a pass event. Since the FSM is now in the
Unlocked state, the second transition is invoked, forcing the machine back to the Locked state and causing the
lock function to be called.

Clearly the STD and the STT are both simple and elegant descriptions of the behavior of the machine. But
they are also very powerful design tools. One of the benefits they convey is the ease with which the designer can
detect strange and unhandled conditions. For example, examine each state in Figure 29-1 and apply both known
events. Notice that there is no transition to handle a coin event in the Unlocked state, nor is there a transition to
handle a pass event in the Locked state.

These omissions are serious logic flaws and are a very common source of programmer error. Programmers
often consider the normal course of events more thoroughly than they consider the abnormal possibilities. The
STD or STT gives the programmer a way to easily check that the design handles every event in every state.

We can fix the FSM by adding the necessary transitions. The new version is shown in Figure 29-2. Here we
can see that if the passenger deposits more coins after the first, the machine remains in the Unlocked state and
lights up a little “thank-you” light encouraging the passenger to continue to enter coins.3 Also, if the passenger
manages to pass through the gate while it is locked (perhaps with the aid of a sledge hammer) then the FSM will
remain in the Locked state and will sound an alarm.

Figure 29-1 Simple Turnstile FSM

3. ;^)

Unlocked

Locked coin/unlock

pass/lock

420
www.EBooksWorld.ir

Implementation Techniques

Implementation Techniques

Nested Switch/Case Statements

There are many different strategies for implementing an FSM. The first, and most direct, is through nested switch/
case statements. Listing 29-1 shows one such implementation.

Listing 29-1

Turnstile.java (Nested Switch Case Implementation)

package com.objectmentor.PPP.Patterns.State.turnstile;

public class Turnstile
{
 // States
 public static final int LOCKED = 0;
 public static final int UNLOCKED = 1;

 // Events
 public static final int COIN = 0;
 public static final int PASS = 1;

 /*private*/ int state = LOCKED;

 private TurnstileController turnstileController;

 public Turnstile(TurnstileController action)
 {
 turnstileController = action;
 }

 public void event(int event)
 {
 switch (state)
 {
 case LOCKED:
 switch (event)
 {
 case COIN:
 state = UNLOCKED;
 turnstileController.unlock();
 break;
 case PASS:
 turnstileController.alarm();
 break;
 }
 break;
 case UNLOCKED:

Figure 29-2 Turnstile FSM that covers abnormal events

Lockedpass/alarm

pass/lock coin/thankyou

coin/unlock

Unlocked

421
www.EBooksWorld.ir

Chapter 29 • State

 switch (event)
 {
 case COIN:
 turnstileController.thankyou();
 break;
 case PASS:
 state = LOCKED;
 turnstileController.lock();
 break;
 }
 break;
 }
 }
}

The nested switch/case statement divides the code into four mutually exclusive zones, each corresponding to
one of the transitions in the STD. Each zone changes the state as needed and then invokes the appropriate action.
Thus, the zone for Locked and Coin changes the state to Unlocked and calls unlock.

There are some interesting aspects to this code that have nothing to do with the nested switch/case statement.
In order for them to make sense, you need to see the unit test that I used to check this code. (See Listings 29-2 and
29-3.)

Listing 29-2

TurnstileController.java

package com.objectmentor.PPP.Patterns.State.turnstile;

public interface TurnstileController
{
 public void lock();
 public void unlock();
 public void thankyou();
 public void alarm();
}

Listing 29-3

TestTurnstile.java

package com.objectmentor.PPP.Patterns.State.turnstile;

import junit.framework.*;
import junit.swingui.TestRunner;

public class TestTurnstile extends TestCase
{
 public static void main(String[] args)
 {
 TestRunner.main(new String[]{"TestTurnstile"});
 }

 public TestTurnstile(String name)
 {
 super(name);
 }

422
www.EBooksWorld.ir

Implementation Techniques

 private Turnstile t;
 private boolean lockCalled = false;
 private boolean unlockCalled = false;
 private boolean thankyouCalled = false;
 private boolean alarmCalled = false;

 public void setUp()
 {
 TurnstileController controllerSpoof = new TurnstileController()
 {
 public void lock() {lockCalled = true;}
 public void unlock() {unlockCalled = true;}
 public void thankyou() {thankyouCalled = true;}
 public void alarm() {alarmCalled = true;}
 };

 t = new Turnstile(controllerSpoof);
 }

 public void testInitialConditions()
 {
 assertEquals(Turnstile.LOCKED, t.state);
 }

 public void testCoinInLockedState()
 {
 t.state = Turnstile.LOCKED;
 t.event(Turnstile.COIN);
 assertEquals(Turnstile.UNLOCKED, t.state);
 assert(unlockCalled);
 }

 public void testCoinInUnlockedState()
 {
 t.state = Turnstile.UNLOCKED;
 t.event(Turnstile.COIN);
 assertEquals(Turnstile.UNLOCKED, t.state);
 assert(thankyouCalled);
 }

 public void testPassInLockedState()
 {
 t.state = Turnstile.LOCKED;
 t.event(Turnstile.PASS);
 assertEquals(Turnstile.LOCKED, t.state);
 assert(alarmCalled);
 }

 public void testPassInUnlockedState()
 {
 t.state = Turnstile.UNLOCKED;
 t.event(Turnstile.PASS);
 assertEquals(Turnstile.LOCKED, t.state);
 assert(lockCalled);
 }
}

423
www.EBooksWorld.ir

Chapter 29 • State

The Package Scope State Variable. Notice the four test functions named testCoinInLockedState,
testCoinInUnlockedState, testPassInLockedState, and testPassInUnlockedState. These functions
test the four transitions of the FSM separately. They do this by forcing the state variable of the Turnstile to
the state they want to check, and then invoking the event they want to verify. In order for the test to access the
state variable, it cannot be private. Thus, I’ve made it package scope and added a comment indicating that my
intent is that the variable is private.

Object-oriented dogma insists that all instance variables of a class ought to be private. I have blatantly
ignored this rule, and by doing so, I have broken the encapsulation of Turnstile.

Or have I?
Make no mistake about it, I would rather have kept the state variable private. However, to do so would

have denied my test code the ability to force its value. I could have created the appropriate setState and
getState methods at package scope, but that seems ridiculous. I was not trying to expose the state variable to
any class other than TestTurnstile, so why should I create a setter and a getter that imply that anyone at pack-
age scope can get and set that variable?

One of Java’s unfortunate weaknesses is the lack of anything like the C++ friend concept. If Java had a
friend statement, then I could have kept state private and declared TestTurnstile to be a friend of
Turnstile. However, as things are, I think that putting state at package scope and using the comment to
declare my intent is the best option.

Testing the Actions. Notice the TurnstileController interface in Listing 29-2. This was put in place
specifically so that the TestTurnstile class could ensure that the Turnstile class was invoking the right
action methods in the right order. Without this interface, it would have been much more difficult to ensure that the
state machine was working properly.

This is an example of the impact that testing has upon design. Had I simply written the state machine with-
out thought to testing, it is unlikely that I would have created the TurnstileController interface. That would
have been unfortunate. The TurnstileController interface nicely decouples the logic of the finite state
machine from the actions it needs to perform. Another FSM, using very different logic, can use the
TurnstileController without any impact at all.

The need to create test code that verifies each unit in isolation forces us to decouple the code in ways we
might not otherwise think of. Thus, testability is a force that drives the design to a less coupled state.

Costs and Benefits of the Nested Switch/Case Implementation. For simple state machines, the nested
switch/case implementation is both elegant and efficient. All the states and events are visible on one or two pages
of code. However, for larger FSMs the situation changes. In a state machine with dozens of states and events, the
code devolves into page after page of case statements. There are no convenient locators to help you see where, in
the state machine, you are reading. Maintaining long, nested switch/case statements can be a very difficult and
error-prone job.

Another cost of the nested switch/case is that there is no good separation between the logic of the finite state
machine and the code that implements the actions. That separation is strongly present in Listing 29-1 because the
actions are implemented in a derivative of the TurnstileController. However, in most nested switch/case
FSMs that I have seen, the implementation of the actions is buried in the case statements. Indeed, this is still possi-
ble in Listing 29-1.

Interpreting Transition Tables

A very common technique for implementing FSMs is to create a data table that describes the transitions. This table
is interpreted by an engine that handles the events. The engine looks up the transition that matches the event,
invokes the appropriate action, and changes the state.

424
www.EBooksWorld.ir

Implementation Techniques

Listing 29-4 shows the code that creates the transition table, and Listing 29-5 shows the transition engine.
Both of these listings are snippets from the full implementation in Listing 29-12 at the end of this chapter.

Listing 29-4

Building the turnstile transition table

 public Turnstile(TurnstileController action)
 {
 turnstileController = action;
 addTransition(LOCKED, COIN, UNLOCKED, unlock());
 addTransition(LOCKED, PASS, LOCKED, alarm());
 addTransition(UNLOCKED, COIN, UNLOCKED, thankyou());
 addTransition(UNLOCKED, PASS, LOCKED, lock());
 }

Listing 29-5

The transition engine

public void event(int event)
 {
 for (int i = 0; i < transitions.size(); i++)
 {
 Transition transition = (Transition) transitions.elementAt(i);
 if (state == transition.currentState && event == transition.event)
 {
 state = transition.newState;
 transition.action.execute();
 }
 }
 }

Costs and Benefits of Interpreting a Transition Table. One powerful benefit is that the code that builds
the transition table reads like a canonical state transition table. The four addTransaction lines can be very easily
understood. The logic of the state machine is all in one place and is not contaminated with the implementation of
the actions.

Maintaining a finite state machine like this is very easy compared to the nested switch/case implementation.
To add a new transition, one simply adds a new addTransition line to the Turnstile constructor.

Another benefit of this approach is that the table can easily be changed at run time. This allows for dynamic
alteration of the logic of the state machine. I have used mechanisms like that to allow hot patching of complex
finite state machines.

Still another benefit is that multiple tables can be created, each representing a different FSM logic. These
tables can be selected at run time based upon starting conditions.

The cost of the approach is primarily speed. It takes time to search through the transition table. For large
state machines, that time may become significant. Another cost is the volume of code that must be written to sup-
port the table. If you examine Listing 29-12 closely, you’ll see a rather large number of small support functions
whose aim is to allow the simple expression of the state transition table in Listing 29-4.

425
www.EBooksWorld.ir

Chapter 29 • State

The STATE4 Pattern
Still another technique for implementing finite state machines is the STATE pattern. This pattern combines the effi-
ciency of the nested switch/case statement with the flexibility of interpreting a transition table.

Figure 29-3 shows the structure of the solution. The Turnstile class has public methods for the events and
protected methods for the actions. It holds a reference to an interface called TurnstileState. The two deriva-
tives of TurnstileState represent the two states of the FSM.

When one of the two event methods of Turnstile is invoked, it delegates that event to the Turnstile-
State object. The methods of TurnstileLockedState implement the appropriate actions for the LOCKED
state. The methods of TurnstileUnlockedState implement the appropriate actions for the UNLOCKED state.
To change the state of the FSM, the reference in the Turnstile object is assigned to an instance of one of these
derivatives.

Listing 29-6 shows the TurnstileState interface and its two derivatives. The state machine is easily visi-
ble in the four methods of those derivatives. For example, the coin method of LockedTurnstileState tells the
Turnstile object to change state to the unlocked state, and then it invokes the unlock action function of
Turnstile.

Listing 29-6

TurnstileState.java

interface TurnstileState
{
 void coin(Turnstile t);
 void pass(Turnstile t);
}

class LockedTurnstileState implements TurnstileState
{
 public void coin(Turnstile t)
 {
 t.setUnlocked();
 t.unlock();
 }

4. [GOF95], p. 305.

Figure 29-3 The STATE Pattern for the Turnstile

+ coin(Turnstyle)
+ pass(Turnstyle)

«interface»
Turnstyle

State+ coin()
+ pass()
lock()
unlock()
thankyou()
alarm()

Turnstyle

Turnstyle
LockedState

Turnstyle
UnlockedState

426
www.EBooksWorld.ir

The State Pattern

 public void pass(Turnstile t)
 {
 t.alarm();
 }
}

class UnlockedTurnstileState implements TurnstileState
{
 public void coin(Turnstile t)
 {
 t.thankyou();
 }

 public void pass(Turnstile t)
 {
 t.setLocked();
 t.lock();
 }
}

The Turnstile class is shown in Listing 29-7. Notice the static variables that hold the derivatives of
TurnstileState. These classes have no variables and therefore never need to have more than one instance.
Holding the derivative instances of the TurnstileState derivatives in variables obviates the need to create a
new instance every time the state changes. Making those variables static obviates the need to create new instances
of the derivatives in the event that we need more than one instance of Turnstile.

Listing 29-7

Turnstile.java

public class Turnstile

{

 private static TurnstileState lockedState = new LockedTurnstileState();

 private static TurnstileState unlockedState = new UnlockedTurnstileState();

 private TurnstileController turnstileController;

 private TurnstileState state = lockedState;

 public Turnstile(TurnstileController action)

 {

 turnstileController = action;

 }

 public void coin()

 {

 state.coin(this);

 }

 public void pass()

 {

 state.pass(this);

 }

427
www.EBooksWorld.ir

Chapter 29 • State

 public void setLocked()
 {
 state = lockedState;
 }

 public void setUnlocked()
 {
 state = unlockedState;
 }

 public boolean isLocked()
 {
 return state == lockedState;
 }

 public boolean isUnlocked()
 {
 return state == unlockedState;
 }

 void thankyou()
 {
 turnstileController.thankyou();
 }

 void alarm()
 {
 turnstileController.alarm();
 }

 void lock()
 {
 turnstileController.lock();
 }

 void unlock()
 {
 turnstileController.unlock();
 }
}

STATE vs. STRATEGY. The diagram in Figure 29-3 is strongly reminiscent of the STRATEGY5 pattern.
Both have a context class; both delegate to a polymorphic base class that has several derivatives. The difference
(see Figure 29-4) is that, in STATE, the derivatives hold a reference back to the context class. The primary function
of the derivatives is to select and invoke methods of the context class through that reference. In the STRATEGY pat-
tern, no such constraint or intent exists. The derivatives of a STRATEGY are not required to hold a reference to the
context, and they are not required to call methods on the context. Thus, all instances of the STATE pattern are also
instances of the STRATEGY pattern, but not all instances of STRATEGY are STATE.

Costs and Benefits of the STATE Pattern. The STATE pattern provides a very strong separation between
the actions and the logic of the state machine. The actions are implemented in the Context class, and the logic is
distributed through the derivatives of the State class. This makes it very simple to change one without affecting
the other. For example, it would be very easy to reuse the actions of the Context class with a different state logic

5. See “Strategy” on page 168.

428
www.EBooksWorld.ir

The State Pattern

by simply using different derivatives of the State class. Alternatively we could create subclasses of Context that
modify or replace the actions without affecting the logic of the State derivatives.

Another benefit of the this technique is that it is very efficient. It is probably just as efficient as the nested
switch/case implementation. Thus, we have the flexibility of the table-driven approach with the efficiency of the
nested switch/case approach.

The cost of this technique is twofold. First, the writing of the State derivatives is tedious at best. Writing a
state machine with 20 states can be mind numbing. Second, the logic is distributed. There is no single place to go
to see it all. This makes the code hard to maintain. This is reminiscent of the obscurity of the nested switch/case
approach.

SMC—The State-Machine Compiler

The tedium of writing the derivatives of state and the need to have a single place to express the logic of the state
machine led me to write a compiler that translates a textual state transition table into the classes necessary to imple-
ment the STATE pattern. This compiler is free and can be downloaded from http://www.objectmentor.com.

The input to the compiler is shown in Listing 29-8. The syntax is as follows:

currentState
{
 event newState action
 ...
}

The four lines at the top describe the name of the state machine, the name of the context class, the initial
state, and the name of the exception that will be thrown in the event of an illegal event.

Listing 29-8

Turnstile.sm

FSMName Turnstile
Context TurnstileActions
Initial Locked
Exception FSMError
{
 Locked
 {
 coin Unlocked unlock
 pass Locked alarm
 }

FIGURE 29-4 STATE V. STRATEGY

D1 D2

Context

«interface»
Strategy

+ method()

S1 S2

Context
«interface»

State

+ event1(Context)
+ event2(Context)

action1()
action2()
action3()

429
www.EBooksWorld.ir

Chapter 29 • State

 Unlocked
 {
 coin Unlocked thankyou
 pass Locked lock
 }
}

In order to use this compiler, you must write a class that declares the action functions. The name of this class
is specified in the Context line. I called it TurnstileActions. (See Listing 29-9.)

Listing 29-9

TurntstyleActions.java

public abstract class TurnstileActions
{
 public void lock() {}
 public void unlock() {}
 public void thankyou() {}
 public void alarm() {}
}

The compiler generates a class that derives from the context. The name of the generated class is specified in
the FSMName line. I called it Turnstile.

I could have implemented the action functions in TurnstileActions. However, I am more inclined to
write another class that derives from the generated class and implements the action functions there. This is shown
in Listing 29-10.

Listing 29-10

TurnstileFSM.java

public class TurnstileFSM extends Turnstile
{
 private TurnstileController controller;
 public TurnstileFSM(TurnstileController controller)
 {
 this.controller = controller;
 }

 public void lock()
 {
 controller.lock();
 }

 public void unlock()
 {
 controller.unlock();
 }

 public void thankyou()
 {
 controller.thankyou();
 }

430
www.EBooksWorld.ir

The State Pattern

 public void alarm()
 {
 controller.alarm();
 }
}

That’s all we have to write. SMC generates the rest. The resulting structure is shown in Figure 29-5. We call
this a THREE-LEVEL FINITE STATE MACHINE.6

The three levels provide the maximum in flexibility at a very low cost. We can create many different finite
state machines simply by deriving them from TurnstileActions. We can also implement the actions in many
different ways simply by deriving from Turnstile.

Notice that the generated code is completely isolated from the code that you have to write. You never have to
modify the generated code. You don’t even have to look at it. You can pay it the same level of attention that you pay
to binary code.

You can see the generated code, as well as the other support code for this example, in Listing 29-13 through
Listing 29-15 in the Listings section at the end of the chapter.

Costs and Benefits of the SMC Approach to the STATE Pattern. Clearly we have managed to maxi-
mize the benefits of the various approaches. The description of the finite state machine is contained all in one place
and is very easy to maintain. The logic of the finite state machine is strongly isolated from the implementation of
the actions, enabling both to be changed without impact upon the other. The solution is efficient, elegant, and
requires a minimum of coding.

The cost is in the use of SMC. You have to have, and to learn how to use, another tool. In this case, however,
the tool is remarkably simple to install and use. (See Listing 29-16 and the preceding paragraphs.) And it’s free!

Figure 29-5 Three-Level FSM

6. [PLoPD1], p. 383.

+ lock()
+ unlock()
+ alarm()
+ thankyou()

«interface»
Turnstyle
Actions

+ coin()
+ pass()

«generated»

Turnstyle

«interface»
Turnstyle
Controller

TurnstyleFSM
Locked

+ coin(Turnstyle)
+ pass(Turnstyle)

«generated»

«parameter»

«generated»
Unlocked

«generated»

State

«delegates»

{private} {private}

{private, abstract}

431
www.EBooksWorld.ir

Chapter 29 • State

Where Should State Machines Be Used?
I use state machines (and SMC) for several different classes of applications.

High-Level Application Policies for GUIs
One of the goals of the graphical revolution in the 1980s was to create stateless interfaces for humans to use. At
the time, computer interfaces were dominated by textual approaches using hierarchical menus. It was easy to
get lost in the menu structure, not knowing what state the screen was in. GUIs helped mitigate that problem by
minimizing the number of state changes that the screen went through. In modern GUIs, a great deal of work is
put in to keeping common features on the screen at all times and making sure the user does not get confused by
hidden states.

It is ironic, then, that the code implementing these “stateless” GUIs, is strongly state driven. In such GUIs,
the code must figure out which menu items and buttons to grey out, which subwindows should appear, which tab
should be activated, where the focus ought to be put, etc. All these decisions relate to the state of the interface.

I learned a very long time ago that controlling these factors is a nightmare unless you organize them into a
single control structure. That control structure is best characterized as an FSM. Since those days, I have been writ-
ing almost all my GUIs using FSMs generated by SMC (or its predecessors).

Consider the state machine in Listing 29-11. This machine controls the GUI for the login portion of an appli-
cation. Upon getting a start event, the machine puts up a login screen. Once the user hits the enter key, the machine
checks the password. If the password is good, it goes to the loggedIn state and starts the user process (not
shown). If the password is bad, it displays a screen informing the user that his password is bad. If the user wants to
try again, he hits the OK button; otherwise he hits the cancel button. If a bad password is entered three times in a
row (thirdBadPassword event), the machine locks the screen until the administrator password is entered.

Listing 29-11

login.sm

Initial init
{
 init
 {
 start logginIn displayLoginScreen
 }

 logginIn
 {
 enter checkingPassword checkPassword
 cancel init clearScreen
 }

 checkingPassword
 {
 passwordGood loggedIn startUserProcess
 passwordBad notifyingPasswordBad displayBadPasswordScreen
 thirdBadPassword screenLocked displayLockScreen
 }

 notifyingPasswordBad
 {
 OK checkingPassword displayLoginScreen
 cancel init clearScreen
 }

432
www.EBooksWorld.ir

High-Level Application Policies for GUIs

 screenLocked
 {
 enter checkingAdminPassword checkAdminPassword
 }

 checkingAdminPassword
 {
 passwordGood init clearScreen
 passwordBad screenLocked displayLockScreen
 }
}

What we’ve done here is to capture the high-level policy of the application in a state machine. This high-
level policy lives in one place and is easy to maintain. It vastly simplifies the rest of the code in the system because
that code is not mixed with the policy code.

Clearly this approach can be used for interfaces other than GUIs. Indeed, I have used similar approaches for
textual and machine–machine interfaces as well. But GUIs tend to be more complex than those others, so the need
for them and the volume of them are greater.

GUI Interaction Controllers

Imagine you want to allow your users to draw rectangles on the screen. The gestures they use are as follows: First
they click on the rectangle icon in the pallet window. Then they position the mouse in the canvas window at one
corner of the rectangle. Then they press the mouse button and drag the mouse toward the desired second corner.
While the user drags, an animated image of the potential rectangle appears on the screen. The user manipulates the
rectangle to the desired shape by continuing to hold the mouse button down while dragging the mouse. When the
rectangle is right, the user releases the mouse button. The program then stops the animation and draws a fixed rect-
angle on the screen.

Of course, the user can abort this at any time by clicking on a different pallet icon. If the user drags the
mouse out of the canvas window, the animation disappears. If the mouse returns to the canvas window, the anima-
tion reappears.

Finally, having finished drawing a rectangle, the user can draw another simply by clicking and dragging
again in the canvas window. There is no need to click on the rectangle icon in the pallet.

What I have described here is a finite state machine. The state transition diagram appears in Figure 29-6. The
solid circle with the arrow denotes the starting state of the state machine.7 The solid circle with the open circle
around it is the final state of the machine.

GUI interactions are rife with finite state machines. They are driven by the incoming events from the user.
Those events cause changes in the state of the interaction.

Distributed Processing

Distributed processing is yet another situation in which the state of the system changes based upon incoming
events. For example, suppose you had to transfer a large block of information from one node on a network to
another. Suppose also that network response time is precious, so you need to chop up the block and send it as a
group of small packets.

The state machine depicting this scenario is shown in Figure 29-7. It starts by requesting a transmission ses-
sion, proceeds by sending each packet and waiting for an acknowledgment, and finishes by terminating the
session.

7. See “States and Internal Transitions” on page 493.

433
www.EBooksWorld.ir

Chapter 29 • State

Conclusion
Finite state machines are underutilized. There are many scenarios in which their use would help to create clearer,
simpler, more flexible, and more accurate code. Making use of the STATE pattern and simple tools for generating
the code from state transition tables can be of great assistance.

Listings

Turnstile.java Using Table Interpretation

This listing shows how a finite state machine can be implemented by interpreting a vector of transition data struc-
tures. It is completely compatible with the TurnstileController in Listing 29-2 and the TurnstileTest in
Listing 29-3.

Figure 29-6 Rectangle Interaction State Machine

Figure 29-7 Sending large block using many packets

Waiting for
click

Dragging

abort

abort/stopAnimation

abort/stopAnimation

OutOfCanvas

mouseEnter/
resumeAnimation

mouseLeave/
pauseAnimation

mouseMove/
animateRectanglemouseDown/

recordFirstPoint,
beginAnimation

mouseUp/
stopAnimation,
drawRectangle

Establishing
Transfer
Session

Sending
Packets

Terminating
Session

requestDenied/
sendTransmissionRequest

packetAcknowledged/
sendNextPacket

lastPacketAcknowledged/
sendSessionTermination

sessionAccepted/
sendFirstPacket

sessionAborted/
sendTransmissionRequest

/sendTransmissionRequest

sessionAborted
sessionTerminated

434
www.EBooksWorld.ir

Listings

Listing 29-12

Turnstile.java using table interpretation

import java.util.Vector;

public class Turnstile
{
 // States
 public static final int LOCKED = 0;
 public static final int UNLOCKED = 1;

 // Events
 public static final int COIN = 0;
 public static final int PASS = 1;

 /*private*/ int state = LOCKED;
 private TurnstileController turnstileController;
 private Vector transitions = new Vector();

 private interface Action
 {
 void execute();
 }

 private class Transition
 {
 public Transition(int currentState, int event,
 int newState, Action action)
 {
 this.currentState = currentState;
 this.event = event;
 this.newState = newState;
 this.action = action;
 }

 int currentState;
 int event;
 int newState;
 Action action;
 }

 public Turnstile(TurnstileController action)
 {
 turnstileController = action;
 addTransition(LOCKED, COIN, UNLOCKED, unlock());
 addTransition(LOCKED, PASS, LOCKED, alarm());
 addTransition(UNLOCKED, COIN, UNLOCKED, thankyou());
 addTransition(UNLOCKED, PASS, LOCKED, lock());
 }

 private void addTransition(int currentState, int event,
 int newState, Action action)
 {
 transitions.add(
 new Transition(currentState, event, newState, action));
 }

435
www.EBooksWorld.ir

Chapter 29 • State

 private Action lock()
 {
 return new Action(){public void execute(){doLock();}};
 }

 private Action thankyou()
 {
 return new Action(){public void execute(){doThankyou();}};
 }

 private Action alarm()
 {
 return new Action(){public void execute(){doAlarm();}};
 }

 private Action unlock()
 {
 return new Action(){public void execute(){doUnlock();}};
 }

 private void doUnlock()
 {
 turnstileController.unlock();
 }

 private void doLock()
 {
 turnstileController.lock();
 }

 private void doAlarm()
 {
 turnstileController.alarm();
 }

 private void doThankyou()
 {
 turnstileController.thankyou();
 }

 public void event(int event)
 {
 for (int i = 0; i < transitions.size(); i++)
 {
 Transition transition = (Transition) transitions.elementAt(i);
 if (state == transition.currentState && event == transition.event)
 {
 state = transition.newState;
 transition.action.execute();
 }
 }
 }

}

436
www.EBooksWorld.ir

Listings

Turnstile.java Generated by SMC, and Other Support Files

Listings 31-13 through 31-16 complete the code for the SMC example of the turnstile. Turnstile.java was gener-
ated by SMC. The generator creates a bit of cruft, but the code is not bad.

Listing 29-13

Turnstile.java (generated by SMC)

//--
//
// FSM: Turnstile
// Context: TurnstileActions
// Exception: FSMError
// Version:
// Generated: Thursday 09/06/2001 at 12:23:59 CDT
//
//--

//--
//
// class Turnstile
// This is the Finite State Machine class
//
public class Turnstile extends TurnstileActions
{
 private State itsState;
 private static String itsVersion = "";

 // instance variables for each state
 private static Locked itsLockedState;
 private static Unlocked itsUnlockedState;

 // constructor
 public Turnstile()
 {
 itsLockedState = new Locked();
 itsUnlockedState = new Unlocked();

 itsState = itsLockedState;

 // Entry functions for: Locked
 }

 // accessor functions

 public String getVersion()
 {
 return itsVersion;
 }

 public String getCurrentStateName()
 {
 return itsState.stateName();
 }

 // event functions - forward to the current State

437
www.EBooksWorld.ir

Chapter 29 • State

 public void pass() throws FSMError
 {
 itsState.pass();
 }

 public void coin() throws FSMError
 {
 itsState.coin();
 }

 //--
 //
 // private class State
 // This is the base State class
 //
 private abstract class State
 {
 public abstract String stateName();

 // default event functions

 public void pass() throws FSMError
 {
 throw new FSMError("pass", itsState.stateName());
 }

 public void coin() throws FSMError
 {
 throw new FSMError("coin", itsState.stateName());
 }

 }

 //--
 //
 // class Locked
 // handles the Locked State and its events
 //
 private class Locked extends State
 {
 public String stateName()
 { return "Locked"; }

 //
 // responds to coin event
 //
 public void coin()
 {
 unlock();

 // change the state
 itsState = itsUnlockedState;
 }

438
www.EBooksWorld.ir

Listings

 //
 // responds to pass event
 //
 public void pass()
 {
 alarm();

 // change the state
 itsState = itsLockedState;
 }
 }

 //--
 //
 // class Unlocked
 // handles the Unlocked State and its events
 //
 private class Unlocked extends State
 {
 public String stateName()
 { return "Unlocked"; }

 //
 // responds to pass event
 //
 public void pass()
 {
 lock();

 // change the state
 itsState = itsLockedState;
 }

 //
 // responds to coin event
 //
 public void coin()
 {
 thankyou();

 // change the state
 itsState = itsUnlockedState;
 }
 }

}

FSMError is the exception that we told SMC to throw if there were ever an illegal event. The turnstile exam-
ple is so simple that there can’t be an illegal event, so the exception is useless. However, in larger state machines,
there are events that should not occur in certain states. Those transitions are never mentioned in the input to SMC.
Thus, if such an event were ever to occur, the generated code would throw the exception.

Listing 29-14

FSMError.java

public class FSMError extends Exception
{
 public FSMError(String event, String state)

439
www.EBooksWorld.ir

Chapter 29 • State

 {
 super("Invalid event:" + event + " in state:" + state);
 }
}

The test code for the SMC generated state machine is very similar to all the other test programs we’ve writ-
ten in this chapter. There are some minor differences.

Listing 29-15

SMCTurnstileTest.java

import junit.framework.*;
import junit.swingui.TestRunner;

public class SMCTurnstileTest extends TestCase
{
 public static void main(String[] args)
 {
 TestRunner.main(new String[]{"SMCTurnstileTest"});
 }

 public SMCTurnstileTest(String name)
 {
 super(name);
 }

 private TurnstileFSM t;
 private boolean lockCalled = false;
 private boolean unlockCalled = false;
 private boolean thankyouCalled = false;
 private boolean alarmCalled = false;

 public void setUp()
 {
 TurnstileController controllerSpoof =
 new TurnstileController()
 {
 public void lock() {lockCalled = true;}
 public void unlock() {unlockCalled = true;}
 public void thankyou() {thankyouCalled = true;}
 public void alarm() {alarmCalled = true;}
 };

 t = new TurnstileFSM(controllerSpoof);
 }

 public void testInitialConditions()
 {
 assertEquals("Locked", t.getCurrentStateName());
 }

 public void testCoinInLockedState() throws Exception
 {
 t.coin();
 assertEquals("Unlocked", t.getCurrentStateName());
 assert(unlockCalled);
 }

440
www.EBooksWorld.ir

Listings

 public void testCoinInUnlockedState() throws Exception
 {
 t.coin(); // put in Unlocked state
 t.coin();
 assertEquals("Unlocked", t.getCurrentStateName());
 assert(thankyouCalled);
 }

 public void testPassInLockedState() throws Exception
 {
 t.pass();
 assertEquals("Locked", t.getCurrentStateName());
 assert(alarmCalled);
 }

 public void testPassInUnlockedState() throws Exception
 {
 t.coin(); // unlock
 t.pass();
 assertEquals("Locked", t.getCurrentStateName());
 assert(lockCalled);
 }
}

The TurnstileController class is identical to all the others that appeared in this chapter. You can see it
in Listing 29-2.

The ant file used to generate the Turnstile.java code is shown in Listing 29-16. Note that it’s not a very
big deal. Indeed, if you wanted to simply type the build command in a DOS window, you could type:

java smc.Smc -f TurnstileFSM.sm

Listing 29-16

build.xml

<project name="SMCTurnstile" default="TestSMCTurnstile" basedir=".">

 <property environment="env" />

 <path id="classpath">
 <pathelement path="${env.CLASSPATH}"/>
 </path>

 <target name="TurnstileFSM">
 <java classname="smc.Smc">
 <arg value="-f TurnstileFSM.sm"/>
 <classpath refid="classpath" />
 </java>
 </target>

</project>

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.
2. Coplien and Schmidt. Pattern Languages of Program Design. Reading, MA: Addison–Wesley, 1995.

441
www.EBooksWorld.ir

442
www.EBooksWorld.ir

30

The ETS Framework

By Robert C. Martin and James Newkirk

This chapter describes a significant software project that was developed from March 1993 until late 1997. The
software was commissioned by the Educational Testing Service (ETS) and was developed by the two of us and
several other developers at Object Mentor, Inc.

Our focus in this chapter is on the techniques, both technical and managerial, for producing a reusable
framework. The creation of such a framework was an essential step in the success of the project, and the design
and history of its development should prove educational.

No software project is developed in a perfect environment, and this one was no exception. In order to under-
stand the technical aspects of the design, it is important to consider the environmental issues as well. Therefore,
before we dive into the software engineering aspects of the project, we are going to give you a bit of background
on the project and the environment in which it was developed.

Introduction

Project Overview

To become a licensed architect in the United States or Canada, you must pass an examination. If you pass, a state
licensing board will give you a license to practice architecture. The examination was developed by the Educational
Testing Service (ETS) under a charter by the National Council of Architectural Registration Boards (NCARB),
and it is currently administered by the Chauncey Group International.

From Chapter 30 of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

443
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

The test consists of nine divisions and is taken over a period of several days. In the three graphical divisions
of the examination, candidates are asked to create solutions in a CAD-like environment by drawing or placing
objects. For example, they might be asked to do the following:

• Design the floor plan of a certain kind of building
• Design a roof to fit on top of an existing building
• Place a proposed building on a parcel of land and design the parking area, road system, and walkway system

to serve the building

In the past, the candidates’ solutions to these problems were drawn using pencil and paper. These documents
were then given to a cadre of jurors for scoring. The jurors were highly experienced architects who would pore
over the candidates’ solutions and decide whether to pass or fail them.

In 1989, NCARB commissioned ETS to research whether or not an automated system for delivering and
scoring the graphical portions of the examination could be developed. By 1992, the ETS and the NCARB had
agreed that such a system was indeed possible. Furthermore, they felt that an object-oriented approach would be
appropriate due to the constantly changing requirements. So they contacted Object Mentor, Inc. (OMI) to help
with the design.

In March 1993, OMI was granted a contract to produce a portion of the test. One year later, after success-
fully completing that portion, OMI was granted a second contract to produce the bulk of the remainder.

Program Structure. The structure that ETS decided on was quite elegant. The graphics examination
would be broken into 15 different problems, called vignettes. Each vignette tested a particular area of knowledge.
One might test the candidate’s understanding of roof design, and another might test their understanding of how to
design floor plans.

Each vignette was further subdivided into two sections. The “delivery” section was to be a graphical user
interface upon which the candidate would “draw” the solution to the problem at hand. The “scoring” section was
to read the solution created by the delivery section and score it. Delivery would be conducted at a location
convenient to the candidate. The solutions would then be transmitted to a central location where they would
be scored.

Scripts. Although there were only 15 vignettes, each would have many possible “scripts.” A script would
specify the exact nature of the problem that the candidate would solve. For example, the floor-plan vignette might
have one script that asked the candidate to design a library, and another that asked the candidate to design a gro-
cery store. Thus, the vignette programs had to be written in a generic fashion. They had to be delivered and scored
in a way that was governed by the script.

Platform. Both the delivery and scoring programs were to run under Windows 3.1 (later upgraded to
W95/NT). The programs were to be written in C++ using object-oriented techniques.

First Contract. In March 1993, OMI was granted a contract to develop the delivery and scoring of the
most complex of all the vignettes: “Building Design.” This decision was motivated by Booch’s recommendation to
develop the highest-risk elements first as a way to manage risk and calibrate the estimation process of the team.

Building Design. Building Design was to test the candidate’s ability to design the floor plan of a rela-
tively simple two-story building. The candidate would be given a building to design, complete with requirements
and constraints. The candidate would then use the delivery program to place rooms, doors, windows, corridors,
stairs, and elevators into their solution.

444
www.EBooksWorld.ir

Introduction

The scoring program would then check the solution against a large number of “features” that would assess
the candidate’s knowledge. The nature of these features is confidential, but in general terms, they would assess
things such as the following:

• Does the building meet the requirements of the client?
• Is the building code compliant?
• Has the candidate demonstrated design logic?
• Are the building and its rooms oriented correctly on the site?

Early History 1993–1994

At this early stage, two of us (Martin and Newkirk) were the sole developers working on this project. Our contract
with ETS said that we were to produce both the delivery and scoring programs for Building Design. However, we
also wanted to develop a reusable framework in conjunction with Building Design.

By 1997, there had to be 15 vignette delivery and scoring programs operational. That gave us four years. We
felt that a reusable framework would give us a big advantage toward that goal. Such a framework would also go a
long way toward helping us manage the consistency and quality of the vignettes. After all, we didn’t want similar
features in different vignettes to operate in subtly different ways.

So, in March 1993, we set out to produce the two components of Building Design and also a framework that
could be reused by the remaining fourteen vignettes.

Success. In September 1993, the first versions of the delivery and scoring programs were complete, and
we demonstrated these programs to representatives of NCARB and ETS. These demonstrations were well
received, and a field trial was scheduled for January 1994.

As with most projects, once users see the program actually operating, they realize that what they asked for
was not really what they wanted. We had been sending interim versions of the vignette to ETS every week
throughout 1993, and there had been a large number of changes and enhancements made right up to that Septem-
ber demonstration.

After the demonstration, the looming field trial caused the rate of changes and enhancements to reach deluge
proportions. The two of us were kept busy, full time, making and testing these changes and preparing the programs
for the field trial.

This churning of the specification for Building Design was accelerated still further by the results of the field
trial, keeping us even busier through the first quarter of 1994.

In December 1993, negotiations were begun for a contract to build the rest of the vignettes. These negoti-
ations would take three months to close. In March 1994, ETS granted OMI a contract to produce a framework
and 10 more vignettes. ETS’s own engineers would produce the remaining five vignettes based upon our
framework.

Framework?

Late in 1993, at the height of the churn in Building Design, one of us (Newkirk) spent a week with one of the engi-
neers at ETS to prepare him for his part in the upcoming contract. The objective was to demonstrate how the code
within the 60,000-line, reusable C++ framework could be reused to build other vignettes. However, things did not
go well. By the end of the week, it was clear that the only way to reuse the framework was to cut and paste bits and
pieces of its source code into the new vignettes. Clearly this was not a good option.

In hindsight, there were two reasons for our failure to create a workable framework. First, we had been
focusing on Building Design to the exclusion of all the other vignettes. Second, we went through months of churn-
ing requirements and schedule pressure. These two things together allowed concepts that were specific to Building
Design to infiltrate the framework.

445
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

To a certain extent, we naively took the benefits of object-oriented technology for granted. We felt that by
using C++ and by doing a careful object-oriented design, a reusable framework would be easy to create. We were
wrong. We discovered what had been known for years—building reusable frameworks is hard.

Framework!
In March 1994, after the new contract was signed, we added two more engineers to the project and began develop-
ing the new vignettes. We still believed we needed a framework and were convinced that what we had would not
serve that function. It was clear we needed to change our strategy.

The 1994 Team

• Robert C. Martin, architect and lead designer, 20+ years experience
• James W. Newkirk, designer and project leader, 15+ years experience
• Bhama Rao, designer and programmer, 12+ years experience
• William Mitchell, designer and programmer, 15+ years experience

The Deadline

The deadline was set by the fact that the test was to go into production in 1997. Candidates would be tested in Feb-
ruary and scored in May. This was an absolute requirement.

The Strategy

To make that schedule and to ensure that the quality and consistency of the program could be managed, we
adopted a new strategy for the construction of the framework. Portions of the original 60,000-line framework were
preserved, but the majority was scrapped.

A Rejected Alternative. One option would have been to try to redesign the framework up front and com-
plete it before any of the vignettes were begun. Indeed, many people would identify this with an architecture-
driven approach. However, we chose not to pursue this option, because it would have caused us to produce large
amounts of framework code that could not be tested inside working vignettes. We did not trust our ability to com-
pletely anticipate the needs of the vignettes. In short, we felt that the architecture needed almost immediate verifi-
cation by being used in working vignettes. We did not want to guess.

Rebecca Wirfs–Brock once said, “You have to build at least three or more applications against a framework
(and then throw them away) before you can be reasonably confident that you have built the right architecture for
that domain.”2 After failing to produce a framework, we felt similarly. Thus, we decided that we would develop the
framework concurrently with the development of several new vignettes. This would allow us to compare similar
features of the vignettes and design those features in a generic and reusable way.

Four vignettes were begun in parallel. As they were being developed, certain portions were found to be
similar. These were then refactored into more generic form and refit into all three vignettes. Thus, nothing entered
the framework unless it had been successfully reused in at least four vignettes.

Also, portions of Building Design were excised and refactored in a similar fashion. Once these portions were
working in all three vignettes, they were placed in the framework.

Among the common features that were added to the framework were the following:

• The structure of the UI screen–Message windows, drawing windows, button palettes, etc.
• Creating, moving, adjusting, identifying, and deleting graphic elements

2. [BOOCH-OS], p. 275.

446
www.EBooksWorld.ir

Framework!

• Zooming and scrolling
• Drawing simple sketch elements such as lines, circles, and polylines
• Vignette timing and automatic abort
• Saving and restoring solution files, including error recovery
• Mathematical models of many geometric elements: line, ray, segment, point, box, circle, arc, triangle, poly-

gon, etc. These models include methods such as Intersection, Area, IsPointIn, IsPointOn, etc.
• Evaluation and weighting of individual scoring features.

Over the next eight months, the framework grew to some 60,000 lines of C++ code, representing somewhat
more than one man–year of direct effort. But this framework was being reused by four different vignettes.

Results

Throwing One Away. What were we to do with the old Building Design? As the framework grew and the
new vignettes were successfully reusing it, Building Design stood more and more as an outsider. It was unlike all
the other vignettes and would have to be maintained and evolved through separate means. Even though Building
Design represented over a man–year of effort, we decided to be ruthless and discard the old version completely.
We committed ourselves to redesign and reimplement it later in the project cycle.

Long Initial Development Time. A negative result of our framework strategy was the relatively long
development time for the first vignettes. The first four vignette delivery programs required nearly four man–years
to develop.

Reuse Efficiency. Upon completion of the initial vignettes, the framework was richly endowed with
60,000 lines of C++ code, and the vignette delivery programs were remarkably small. Each program had approxi-
mately 4,000 lines of boiler-plate code (i.e., code that is the same for each vignette). Each program also had an
average of 6,000 lines of application-specific code. The smallest vignette had as few as 500 lines of application-
specific code, and the largest had as many as 12,000. We felt that it was remarkable that, on average, nearly five-
sixths of the code in each vignette was pulled from the framework. Only one-tenth of the code within these pro-
grams was unique.

Development Productivity. After the first four vignettes, development time drastically decreased. Seven
more delivery programs (including a rewrite of Building Design) were completed within 18 man–months. The
line-count ratios of these new vignettes remained roughly the same as the first four.

Moreover, the Building Design program, which took us over one man–year to write the first time, took
only 2.5 man–months to rewrite from scratch with the framework in place. This is nearly a 6:1 increase in
productivity.

Another way to look at these results is that the first five vignettes, including Building Design, required one
man–year of effort apiece. Subsequent vignettes, however, required 2.6 man–months apiece—an increase of
nearly 400 percent.

Weekly Delivery. From the outset of the project, and throughtout its active development, we shipped
interim versions to ETS every week. ETS would test and evaluate these versions and then send us a list of changes.
We would estimate these changes, and then work with ETS to schedule the week in which they’d be delivered. Dif-
ficult changes, or changes of low importance, were often delayed in preference to high priority changes. Thus, ETS
kept control of the project and schedule throughout.

A Robust and Flexible Design. One of the most satisfying aspects of the project is the way that the archi-
tecture and framework have weathered the intense flux of requirements changes. During the peak of development,
nary a week went by without a long list of changes and fixes being identified. Some of these changes were in

447
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

response to bugs, but many more were due to changes in the actual requirements. Yet, with all the modifications,
fiddling, and tweaking in the midst of heavy development, “the design of the software didn’t unravel.”3

Final Outcome. By February 1997, architectural candidates began using the delivery programs to take
their registration exams. By May 1997, their results began to be scored. The system has been up and running since
that time, and it has worked well. Every architect candidate in North America now takes this exam using this soft-
ware.

Framework Design

The Common Requirements of the Scoring Applications

Consider the problem of how to test someone’s knowledge and skill. The scheme that was adopted by ETS for the
NCARB programs is quite elaborate. We can illustrate it here by exploring a simple, fictitious example — a test for
basic math.

In our basic math test, students are presented with 100 math problems ranging from simple addition and sub-
traction problems to large multiplication and long-division problems. We will examine their responses to these
problems to ascertain their competency and skill in basic math. Our goal is to give them a pass/fail grade. “Pass”
means that we are certain that they have acquired the fundamental knowledge and skill needed for basic math.
“Fail” means that we are sure that they have not acquired this knowledge and skill. In those cases where we are
unsure, we will return a score of “indeterminate.”

However, we have another goal, too. We want to be able to enumerate the strengths and weaknesses of the
student. We want to partition the topic of basic math into subtopics and then evaluate the student for each of those
subtopics.

Consider, for example, the problem of a person who has learned an improper multiplication fact. Perhaps
they always mistake for 42. This person will get a large percentage of the multiplication and division prob-
lems wrong. Certainly that student deserves to fail the test. On the other hand, consider that the student did every-
thing else correctly! The student correctly created the partial products in long multiplication and correctly
structured the long-division problems. Indeed, the only mistake that the student made was = 42. Certainly
we’d like to know that. Indeed, since the corrective action for such a student is so simple, we might very well want
to give the student a passing grade along with some corrective guidance.

So how can we structure the scoring of the test to determine the areas of basic math in which the student has
gained expertise and those areas in which he or she has not? Consider the diagram in Figure 30-1. The rectangles
on this diagram show areas of expertise that we want to test for. The lines show a hierarchical dependency.
Thus, knowledge of basic math depends on knowledge of terms and factors. Knowledge of terms depends on
knowledge of addition facts plus the mechanics of addition and subtraction. Knowledge of addition depends
upon knowledge of the commutative and associative properties of addition and the mechanics of carrying.

The leaf rectangles are called “features.” Features are units of knowledge that can be evaluated and given
acceptable (A), unacceptable (U), or indeterminate (I) values. Thus, given our 100 problems and the student’s
answers, we want to apply each feature to every problem and determine a score. In the case of the “Carry” feature,
we would look at every addition problem and compare it to the student’s answer. If the student got all the addition
problems correct, the result of the “Carry” feature would, of course, be ‘A.’ However, for each addition problem
that the student got wrong, we would try to determine if the error made was an error in carrying. We might try dif-
ferent combinations of carrying errors to see if one of those errors would lead to the answer that the student gave.
If we could determine, with a high degree of probability, that a carry error was made, we would adjust the score of
the carry feature accordingly. In the end, the score returned by the carry feature would be a statistical result based
upon the total number of wrong answers that could be traced to errors in carrying.

3. Pete Brittingham, NCARB Project Manager, ETS.

7 8×

7 8×

448
www.EBooksWorld.ir

Framework Design

If, for example, the student got half the addition problems wrong, and most of them could be traced to carry
errors, we would certainly return a ‘U’ for the carry feature. If, on the other hand, only a quarter of the errors could
be traced to carry errors, we might return an ‘I.’

In the end, all the features are evaluated in this manner. Each feature examining the test answers to develop a
score for that particular feature. The scores of the various features represent an analysis of the student’s knowledge
of basic math.

The next step is to derive a final grade from that analysis. To do this, we merge the scores of the features up
the hierarchy through the use of weights and matrices. Notice on Figure 30-1 that there are matrix icons at the
junctures between the levels of the hierarchy. The matrix associates a weighting factor with the score from each
feature and then provides a map for the score for that level in the hierarchy. For example, the matrix just below the
Addition node would establish the weights to be applied to the Carry and Properties scores, and would then
describe the mapping that would generate the overall score for Addition.

Figure 30-2 shows the form of one of these matrices. The input from Carry is considered more important that
the input from Properties, so it is given twice the weight. The weighted scores are then added together, and the
result is applied to the matrix.

For example, let’s presume a score of ‘I’ from Carry, and a score of ‘A’ from Properties. There are no ‘U’
scores, so we use the left-most column of the matrix. The weighted ‘I’ score is 2, so we use the third row of the
matrix, giving a result of ‘I.’ Notice that there are holes in the matrix. These are impossible conditions. Given the
current weightings, there is no combination of scores that will select the empty cells in the matrix.

Figure 30-1 Feature Hierarchy for Basic Math

Figure 30-2 The Addition Matrix

Basic Math

Long
Division

Partial
Products

M1
Terms

M2

Factors

M3

Facts FactsAddition

M4

Borrow Properties

Carry Properties

Division

M7

Properties

Subtraction

M5

Properties

Multiplication

M6

0 1 2 3

A0 I U U Inputs:
Carry X 2
Properties X 1

Output:
Addition

A1I U

I2 U

U

U3

449
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

This scheme of weights and matrices is repeated at each level of the hierarchy until a final score is derived.
Thus, the final score is a merging and remerging of the various feature scores. The structure of the hierarchy lends
itself to very precise tuning on the part of the psychometricians at ETS.

The Design of the Scoring Framework

Figure 30-3 shows the static structure of the scoring framework. The structure can be divided into two major sec-
tions. The three classes on the right, shown in distinctive font, are not part of the framework. They represent the
classes that must be written for each specific scoring application. The rest of the classes in Figure 30-3 are frame-
work classes, which are common to all scoring applications.

The most important class in the scoring framework is Evaluator. This class is an abstract class that repre-
sents both the leaf nodes and the matrix nodes of the scoring tree. The Evaluate(ostream&) function is called
when the score of a node in the scoring tree is desired. This function makes use of the TEMPLATE METHOD4 pattern
in order to provide a standard method for logging scores to an output device.

Listing 30-1

Evaluator

class Evaluator
{
 public:
 enum Score {A,I,U,F,X};
 Evaluator();
 virtual ~Evaluator();

 Score Evaluate(ostream& scoreOutput);

Figure 30-3 Scoring Framework

4. [GOF95], p. 325.

Vignette
Dictionary

Vignette
Scoring App

Vignette
Feature

Scoring
Application

Feature
Dictionary

Matrix

+ GetScore(i,u)
+ SetScore(i,u,s)

- DoEval()
+ AddEvaluator(e,rank)
+ AddMatrixElement(i,u,s)

FeatureGroup

rank : int

pair<Evaluator,int>

pair<string,Evaluator>

+ Evaluate(Output)
- DoEval()

Evaluator

*

*

*

450
www.EBooksWorld.ir

Framework Design

 void SetName(const String& theName) {itsName = theName;}
 const String& GetName() {return itsName;}

 private:
 virtual Score DoEval() = 0;

 String itsName;
};

See Listings 30-1 and 30-2. The Evaluate() function calls a private, pure virtual function called
DoEval(). This function will be overridden to perform the actual evaluation of the scoring-tree node. It returns
the score and allows Evaluate() to output it in the standard form.

Listing 30-2

Evaluator::Evaluate

Evaluator::Score Evaluator::Evaluate(ostream& o)
{
 static char scoreName[] = {‘A’, ’I’, ’U’, ’F’, ’X’};
 o << itsName << “:”;
 score = DoEval();
 o << scoreName[score] << endl;
 return score;
}

Leaf nodes of the scoring tree are represented by the VignetteFeature class in Figure 30-3. Actually,
there would be dozens of such classes in each scoring application. Each would override DoEval() to calculate the
score for its own particular scoring feature.

Matrix nodes of the scoring tree are represented by the FeatureGroup class in Figure 30-3. Listing 30-3
shows what this class looks like. There are two functions that assist in creating a FeatureGroup object. The first
is AddEvaluator, and the second is AddMatrixElement.

Listing 30-3

FeatureGroup

class FeatureGroup : public Evaluator
{
public:
 FeatureGroup(const RWCString& name);
 virtual ~FeatureGroup();

 void AddEvaluator(Evaluator* e , int rank);

 void AddMatrixElement(int i, int u, Score s);
private:
 Evaluator::Score DoEval();
 Matrix itsMatrix;
 vector<pair<Evaluator*,int> > itsEvaluators;
};

The AddEvaluator function allows child nodes to be added to the FeatureGroup. For example, referring
back to Figure 30-1, the Addition node would be a FeatureGroup, and we would call AddEvaluator twice to

451
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

load the Carry and Properties nodes to it. The AddEvaluator function allows the rank of the evaluator to be
specified. The rank is the multiplier that gets applied to the score coming out of the evaluator. Thus, when we
called AddEvaluator to add Carry to the Addition FeatureGroup, we would have specified a rank of 2
because the Carry feature has twice the weight of the Properties feature.

The AddMatrixElement function adds a cell to the matrix. It must be called for every cell that requires
population. For example, the matrix in Figure 30-2 would be created using the sequence of calls in Listing 30-4.

Listing 30-4

Creation of the Addition Matrix

addition.AddMatrixElement(0,0,Evaluator::A);
addition.AddMatrixElement(0,1,Evaluator::I);
addition.AddMatrixElement(0,2,Evaluator::U);
addition.AddMatrixElement(0,3,Evaluator::U);
addition.AddMatrixElement(1,0,Evaluator::A);
addition.AddMatrixElement(1,2,Evaluator::U);
addition.AddMatrixElement(2,0,Evaluator::I);
addition.AddMatrixElement(2,1,Evaluator::U);
addition.AddMatrixElement(3,0,Evaluator::U);

The DoEval function simply iterates through the list of evaluators, multiplying their score by the rank and
adding the product to the appropriate accumulators for I and U scores. Once complete, it uses those accumulators
as matrix indices to pull out the final score. (See Listing 30-5.)

Listing 30-5

FeatureGroup::DoEval

Evaluator::Score FeatureGroup::DoEval()
{
 int sumU, sumI;
 sumU = sumI = 0;
 Evaluator::Score s, rtnScore;
 Vector<Pair<Evaluator*, int> >::iterator ei;
 ei = itsEvaluators.begin()

 for(; ei != itsEvaluators.end(); ei++)
 {
 Evaluator* e = (*ei).first;
 int rank = (*ei).second;

 s = e.Evaluate(outputStream);

 switch(s)
 {
 case I:
 sumI += rank;
 break;
 case U:
 sumU += rank;
 break;
 }
 } // for ei
 rtnScore = itsMatrix.GetScore(sumI, sumU);
 return rtnScore;
}

452
www.EBooksWorld.ir

A Case for Template Method

One last issue remains. How does the scoring tree get built? It was quite evident that the psychometricians at
ETS would want the ability to change the topology and weighting of the tree without having to change the actual
applications. Thus the scoring tree is built up by the VignetteScoringApp class. (See Figure 30-3.)

Each scoring application had its own implementation for this class. One of the responsibilities of this class
was to build a derivative of the FeatureDictionary class. This class contained a mapping of strings to
Evaluator pointers.

When a scoring application was started, the scoring framework gained control. It invoked the method in the
ScoringApplication class that caused the appropriate derivative of the FeatureDictionary to be created. It
then read a special text file that described the topology of the scoring tree and its weights. This text file identified
features by using special names. These names were the names that were associated with the appropriate
Evaluator pointers in the FeatureDictionary.

Thus, in its simplest form, a scoring application was nothing more than a set of features and a method that
constructed a FeatureDictionary. The building and evaluation of the scoring tree was handled by the frame-
work and was therefore common to all the scoring applications.

A Case for TEMPLATE METHOD

One of the vignettes tested the candidates’ abilities to lay out the floor plan of a building such as a library or a
police station. In this vignette, the candidate had to draw rooms, corridors, doors, windows, wall openings, stairs,
elevators, etc. The program converted the drawing into a data structure that the scoring program could interpret.
The object model looked something like Figure 30-4.

Make no mistake about this. The objects in this data structure had very minimal functionality. They were not
polymorphic objects in any sense of the word. Rather, they were simple data carriers—A purely representational
model.

A building was composed of two floors. Each floor had many spaces. Each space contained many portals,
each of which separated two spaces. Portals could be windows or could allow a human to pass through. Human
portals were either wall openings or doors.

Scoring was done by testing the solution for a set of features. The features were things like the following:

• Did the candidate draw all the required spaces?
• Does each space have an acceptable aspect ratio?

Figure 30-4 Floor Plan Data Structure

Building Floor

Space Portal

HumanPortal

Door Wall Opening

Window

0..*

0..* 2

2

453
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

• Does each space have a way in?
• Do external spaces have windows?
• Are the men’s and ladies’ washrooms connected by a door?
• Does the president’s office have a view of the mountains?
• Does the kitchen have easy access to a back alley?
• Does the lunchroom have easy access to the kitchen?
• Can a person navigate the corridor system and get to each room?

The psychometricians at ETS wanted to be able to easily change the shape of the scoring matrix.They
wanted to be able to change the weightings, regroup the features into different subhierarchies, etc. They wanted to
be able to take out features that they considered worthless or add new features. Most of these manipulations were a
matter of changing a single configuration text file.

For performance reasons, we only wanted to calculate the features that were included in the matrix. So we
created classes for each feature. Each of these Feature classes had an Evaluate method that would walk the
data structure in Figure 30-4 and calculate a score. This meant that we had dozens and dozens of Feature classes
that all walked the same data structure. The code duplication was horrendous.

Write a Loop Once

To deal with the code duplication, we started using the TEMPLATE METHOD pattern. This was in 1993 and 1994, long
before we knew anything about patterns. We called what we were doing “Write a loop once.” (See Listings 30-6 and
30-7.) These are the actual C++ modules from that program.

Listing 30-6

solspcft.h

/* $Header: /Space/src_repository/ets/grande/vgfeat/
solspcft.h,v 1.2 1994/04/11 17:02:02 rmartin Exp $ */

#ifndef FEATURES_SOLUTION_SPACE_FEATURE_H
#define FEATURES_SOLUTION_SPACE_FEATURE_H

#include "scoring/eval.h"

template <class T> class Query;

class SolutionSpace;
//--
// Name
// SolutionSpaceFeature
//
// Description
// This class is a base class which provides a loop which
// scans through the set of solution spaces and then
// finds all the solution spaces that match it. Pure virtual
// functions are provided for when a solution space are found.
//

class SolutionSpaceFeature : public Evaluator
{
 public:
 SolutionSpaceFeature(Query<SolutionSpace*>&);

454
www.EBooksWorld.ir

A Case for Template Method

 virtual ~SolutionSpaceFeature();
 virtual Evaluator::Score DoEval();
 virtual void NewSolutionSpace(const SolutionSpace&) = 0;
 virtual Evaluator::Score GetScore() = 0;

 private:
 SolutionSpaceFeature(const SolutionSpaceFeature&);
 SolutionSpaceFeature& operator= (const SolutionSpaceFeature&);

 Query<SolutionSpace*>& itsSolutionSpaceQuery;
};
#endif

Listing 30-7

solspcft.cpp

/* $Header: /Space/src_repository/ets/grande/vgfeat/
solspcft.cpp,v 1.2 1994/04/1 1 17:02:00 rmartin Exp $ */

#include "componen/set.h"

#include "vgsolut/solspc.h"
#include "componen/query.h"
#include "vgsolut/scfilter.h"
#include "vgfeat/solspcft.h"

extern ScoringFilter* GscoreFilter;

SolutionSpaceFeature::SolutionSpaceFeature(Query<SolutionSpace*>& q)
: itsSolutionSpaceQuery(q) {}

SolutionSpaceFeature::~SolutionSpaceFeature() {}

Evaluator::Score SolutionSpaceFeature::DoEval()
{
 Set<SolutionSpace*>& theSet = GscoreFilter->GetSolutionSpaces();
 SelectiveIterator<SolutionSpace*>ai(theSet,itsSolutionSpaceQuery);

 for (; ai; ai++)
 {
 SolutionSpace& as = **ai;
 NewSolutionSpace(as);
 }
 return GetScore();
}

As you can see from the comment header, this code was written in 1994. So it’ll look a bit strange to those of
you who are used to STL. Still, if you ignore the cruft and the bizarre iterators, you’ll see the classic TEMPLATE

METHOD pattern in there. The DoEval function loops through all the SolutionSpace objects. It then calls the
pure virtual NewSolutionSpace function. Derivatives of SolutionSpaceFeature implement NewSolution-
Space and measure each space against a particular scoring criterion.

455
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

The derivatives of SolutionSpaceFeature included features that measured whether the appropriate
spaces were placed into the solution, whether the spaces had the appropriate area and aspect ratio, whether eleva-
tors stacked properly, etc.

The neat thing about this is that the loop that traverses the data structure is located in one place. All the scor-
ing features inherit it rather than reimplement it.

Some of the features had to measure characteristics of the portals attached to a space. So we reproduced the
pattern and created the class PortalFeature derived from SolutionSpaceFeature. The implementation of
NewSolutionSpace within PortalFeature looped through all the portals in the SolutionSpace argument
and called the pure virtual function NewPortal(const Portal&). (See Figure 30-5.)

This structure allowed us to create dozens of different scoring features, each one of which walked the floor-
plan data structure, without knowing what the floor-plan data structure looked like. If the details of the floor-plan
data structure changed (e.g., we decided to use STL instead of our own iterators), we’d have to change two classes
rather than several dozen.

Why did we choose TEMPLATE METHOD over STRATEGY?5 Consider how much looser the coupling would
have been had we used STRATEGY! (See Figure 30-6.)

Using the TEMPLATE METHOD structure, if we had to make a change to the algorithms that walked the data
structure, we would have had to change SpaceFeature and PortalFeature. In all likelihood, this would have
forced us to recompile all the features. However, using the STRATEGY pattern, the change would have been
restricted to the two Driver classes. There is virtually no chance that the features would need to be recompiled.

So why did we choose the TEMPLATE METHOD? Because it was simpler. Because the data structure was not
something that was going to change frequently. And because recompiling all the features cost just a few minutes.

So, even though the use of inheritance in the TEMPLATE METHOD pattern resulted in a more tightly coupled
design, and even though the STRATEGY pattern conforms to the DIP better than the TEMPLATE METHOD pattern
does, in the end it wasn’t worth the two extra classes to implement the STRATEGY.

The Common Requirements of the Delivery Applications

The delivery programs had quite a bit of overlap. For example, the structure of the screen was the same in all
vignettes. At the left of the screen was a window that contained nothing but a column of buttons. This window was
called the “Command Window.” The buttons in the Command Window acted as the controls for the application.
They were labeled with terms such as, “Place Item,” “Erase,” “Move/Adjust,” and “Zoom,” and “Done.” Clicking
on these buttons drove the application through the desired behaviors.

Figure 30-5 TEMPLATE METHOD structure of the scoring features

5. Clearly, we didn’t think of it in those terms. The names of the patterns hadn’t been invented at the time we made this decision.

SpaceFeature

+ DoEval()
+ NewSpace(Space s)

PortalFeature

+ NewSpace(Space s)
+ NewPortal(Space s, Portal p)

AreaFeature

DoorFeature

AspectRatio
Feature

OutsideView
Feature

AlleyAccess
Feature

Elevator
Stacking
Feature

456
www.EBooksWorld.ir

A Case for Template Method

To the right of the Command Window was the Task Window. This was a large scrollable and zoomable area
into which the user could draw his solution. Commands initiated in the Command Window were typically used to
modify the contents of the Task Window. Indeed, most of the commands that were initiated in the command win-
dow required significant interaction within the Task Window.

For example, in order to place a room on a floor plan, the user would click on the Place Item button in the
Command Window. A menu of possible rooms would pop up. The user would select the kind of room he wished to
place into the floor plan. Then the user would move the mouse into the Task Window and click at the location
where he wanted the room to be placed. Depending upon the vignette, this might anchor the upper left corner of
the room where the user clicked. The lower left corner of a stretchable room would then follow the motions of the
mouse in the Task Window until the user clicked for the second time, anchoring the lower left corner at that
position.

These actions were similar, though not identical, in each vignette. Some vignettes did not deal with rooms,
but rather dealt with contour lines, property lines, or roofs. Though there were differences, the overall paradigm of
operating within the vignettes was quite similar.

This similarity meant that we had a significant opportunity for reuse. We ought to be able to create an object-
oriented framework that captured the bulk of the similarities and that allowed the differences to be expressed con-
veniently. In this we succeeded.

The Design of the Delivery Framework

The ETS framework finally grew to be nearly 75,000 lines of code. Clearly we cannot show all the details of that
framework here. Thus, we have chosen two of the most illustrative elements of the framework to explore: the event
model and the taskmaster architecture.

The Event Model. Every action taken by the user caused events to be generated. If the user clicked upon
a button, an event named after that button was generated. If the user selected a menu item, an event named for that
menu item was generated. Marshalling those events was a significant problem for the framework.

The reason for the problem was the fact that a very large portion of all the events could be handled by the
framework, and yet each individual vignette might need to override the way the framework handled a particular

Figure 30-6 Floor-plan scoring structure with STRATEGY

SpaceFeatureDriver

+ DoEval()

PortalFeatureDriver

+ NewSpace(Space s)
AreaFeature

DoorFeature

AspectRatio
Feature

OutsideView
Feature

AlleyAccess
Feature

Elevator
Stacking
Feature

SpaceFeature
«interface»

+ NewSpace(Space s)

PortalFeature
«interface»

+ NewPortal(Space s, Portal p)

457
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

event. Thus, we needed to find a way to allow the vignettes the power to override the processing of events if
needed.

The problem was complicated by the fact that the list of events was not closed. Each vignette could select its
own particular set of buttons in the Command Window and its own particular set of menu items. Thus, the frame-
work needed to marshal the events that were common to all vignettes, while allowing each vignette to override the
default processing; and it needed to allow for the vignette to marshal its own vignette-specific events. This was not
an easy task to accomplish.

As an example, consider Figure 30-7. This diagram6 shows a small portion of the finite state machine that
would be used to marshal the events that occurred in the Command Window of a vignette. Each vignette had its
own special version of this finite state machine.

Figure 30-7 shows how three different kinds of events behaved. Let us first consider the simplest case, the
ScreenCursor event. This event was generated when the user clicked on the Change Cursor button. Each time
the user clicked this button, the cursor in the Task Window would toggle between an arrow and a full-screen cross
hair. Thus, although the cursor changed state, no change of state occurred in the event processor.

When a user wants to delete an object he has drawn, he clicks on the Erase button. He then clicks on the item
or items in the Task Window that he wants to delete. Finally, he clicks again on the Erase button to commit the
deletion. The state machine in Figure 30-7 shows how the Command Window event processor deals with this. The
first Erase event causes a transition from the Idle state to the Erasing state and starts up an Erase Task. We’ll
be talking more about Tasks in the next section. For now, it is sufficient that you know that the Erase Task will
deal with any events that take place in the Task Window.

Notice that even in the Erasing state, the ScreenCursor event will still function properly and will not
interfere with the erase operation. Notice also that there are two ways out of the Erasing state. If another Erase
event occurs, then the Erase Task is ended, committing the erasure, and the state machine transitions back to the
idle state. This is the normal way to end the erase operation.

6. The notation for state diagrams like this is fully described in Appendix B on page 489.

Figure 30-7 Command Window Event Processor

ScreenCursor/ToggleScreenCursor

Erase/EndEraseTask

Erase/StartEraseTask

Measure/MeasureTask

Sketch/
ClearCurTask,
GetSketchChoice

Sketch/GetSketchChoice

Processing

Idle

CurrentTaskPresent

Measuring

Erasing

Erase/
ClearCurTask,
StartEraseTask

458
www.EBooksWorld.ir

A Case for Template Method

The other way to end the erase operation is to click on some of the other buttons in the Command Window.
If, while erasure is in progress, you click on a Command Window button that starts up a different task (e.g., the
Sketch button) then the Erase Task is aborted, and the deletion is cancelled.

Figure 30-7 shows how this cancellation works with the Sketch event, but there are many other events not
shown that work the same way. If the user hits the Sketch button, either when the system is in the Erasing or
Idle state, the system will transition to the Idle state and the GetSketchChoices function will be called. This
function puts up the sketch menu, which contains a list of operations that the user can perform. One of those oper-
ations is measure.

When the user selects the measure item from the sketch menu, the Measure event occurs. This starts up the
Measure Task. When measuring, the user may click on two points in the Task Window. The two points will be
marked with tiny little cross hairs, and the distance between them will be reported in a small message window at
the bottom of the screen. The user may then click on two more points, and two more, and two more, etc. There is
no normal exit from the Measure Task. Instead, the user must click on a button that could start up another task,
like Erase or Sketch.

The Event Model Design. Figure 30-8 shows the static model of the classes that implement the Com-
mand Window event processor. The hierarchy on the right represents the CommandWindow, while the hierarchy on
the left represents the finite-state machine that translates events into actions.

CommandWindow, StandardCommandWindow, and StandardFSM are framework classes. The rest are spe-
cific to the vignette. CommandWindow provides the implementations for standard actions, such as MeasureTask
and EraseTask.

Events are received by the VignetteCommandWindow. They are passed to the finite-state machine, which
translates them into actions. The actions are then passed back to the CommandWindow hierarchy, which imple-
ments them.

The CommandWindow class provides implementations for standard actions such as MeasureTask and
EraseTask. A “standard action” is an action that is common to all vignettes. StandardCommandWindow

Figure 30-8 Command Window Event Processor Static Model

Standard FSM

+ Measure()
+ MeasureTask()

Command
Window

+ Measure()
+ MeasureTask()

Vignette FSM
Context

+ SpecificTask()

+ Measure()
+ SpecificEvent()

Standard
Command
Window

+ Measure()

Vignette FSM
«generated»

+ Measure(StandardFSM)
+ SpecificEvent(StandardFSM)

Vignette FSM State
«generated»

+ SpecificEvent()
+ SpecificTask()

Vignette
Command
Window

+ MeasureTask()
+ SpecificTask()

Vignette FSM
Glue(various States)

«generated»

459
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

provides for the marshalling of standard events to the finite-state machine. VignetteCommandWindow is specific
to the vignette and provides for both the implementation of specific actions and the marshalling of specific events.
It also allows the standard implementations and marshalling to be overridden.

Thus, the framework provides default implementations and marshalling for the all the common tasks. But
any one of those implementations or marshallings can be overridden by the vignette.

Tracing a Standard Event. Figure 30-9 shows how a standard event gets marshalled to the finite state
machine and translated to a standard action. Message 1 is the Measure event. It comes from the GUI and is passed
to the VignetteCommandWindow. The default marshalling for this event is provided by the StandardCommand-
Window, so it forwards the event to the StandardFSM in message 1.1.

StandardFSM is a framework class that provides an interface for all the incoming standard events and all
the outgoing standard actions. None of these functions are implemented at this level. VignetteFSMContext adds
interfaces, but no implementations, for vignette-specific events and actions.

The real work of translating an event to an action takes place in the VignetteFSM and VignetteFSMState
classes. VignetteFSM contains the implementations for all the event functions. So, the 1.1:Measure message
gets deployed down to this level. VignetteFSM responds by sending 1.1.1:Measure(this) to the Vignette-
FSMState object.

VignetteFSMState is an abstract class. There are derivatives of this class for each state of the finite-state
machine. In Figure 30-9, we presume that the current state of the FSM is Idle. (See Figure 30-7.) Thus the
1.1.1:Measure(this) message gets deployed to the IdleState object. This object responds by sending two
messages back to VignetteFSM. The first is 1.1.1.1:SetState(ms), which changes the state of the FSM to
the Measuring state. The second message is 1.1.1.2:MeasureTask(), which is the action required by the
Measure event in the Idle state.

Figure 30-9 Processing the Measure Event

Standard FSM

+ Measure()
+ MeasureTask()

Command
Window

+ Measure()
+ MeasureTask()

Vignette FSM
Context

+ SpecificTask()

+ Measure()
+ SpecificEvent()

Standard
Command
Window

+ Measure()

Vignette FSM
«generated»

+ Measure(StandardFSM)

Vignette FSM State
«generated»

+ SpecificEvent()
+ SpecificTask()

+ MeasureTask()
+ SpecificTask()

«generated»

1.1.1.2.1:MeasureTask()

1.1.1.1:SetState(ms)
1.1.1.2:MeasureTask()

1.1.1:Measure(this)

1
:M

e
a
su

re

1.1:Measure

:IdleState

«generated»
ms:

MeasuringState

:Vignette FSM
Glue

:Vignette
Command
Window

460
www.EBooksWorld.ir

A Case for Template Method

The MeasureTask message is finally implemented in the VignetteFSMGlue class, which recognizes
the action as a standard action declared in CommandWindow, and therefore routes it there in message
1.1.1.2.1:MeasureTask, thus completing the circuit.

The mechanism employed for converting events to actions is the STATE pattern. We make prodigious use of
this pattern in many areas of the framework, as the following sections will show. The «generated» stereotype that
appears in the STATE pattern classes indicates that these classes are automatically generated by SMC.

Tracing a Vignette Specific Event. Figure 30-10 shows what happens when a vignette-specific event
occurs. Once again, message 1:SpecificEvent is caught by the VignetteCommandWindow. However,
since the marshalling for specific events are implemented at this level, it is the VignetteCommandWindow that
sends message 1.1:SpecificEvent. Moreover, it sends it to the VignetteFSMContext class where the
SpecificEvent method was first declared.

Once again, the event is deployed to VignetteFSM, which, in message 1.1.1:SpecificEv, negotiates
with the current state object to generate the corresponding action. As before, the state object replies with two mes-
sages, 1.1.1.1:SetState and 1.1.1.2:SpecificTask.

Again, the message is deployed down to VignetteFSMGlue. However, this time, it is recognized as a
vignette specific action and is therefore routed directly to the VignetteCommandWindow where specific actions
are implemented.

Generating and Reusing the Command Window State Machine. At this point, you might be wonder-
ing why it requires so many classes to marshal the events and actions in this fashion. Consider, however, that,
although there are many classes, there are very few objects. Indeed, the instantiated objects are simply Vignette-
CommandWindow, VignetteFSMGlue, and the various state objects, which are trivial and automatically
generated.

Figure 30-10 Processing a specific event

Standard FSM

+ Measure()
+ MeasureTask()

Command
Window

+ Measure()
+ MeasureTask()

Vignette FSM
Context

+ SpecificTask()

+ Measure()
+ SpecificEvent()

Standard
Command
Window

+ Measure()

Vignette FSM
«generated»

+ SpecificEv(StandardFSM)

Vignette FSM State
«generated»

+ SpecificEvent()
+ SpecificTask()

+ MeasureTask()
+ SpecificTask()

1.1.1.2.1:SpecificTask()

1.1.1.1:SetState(_)
1.1.1.2:SpecificTask()

1.1.1:SpecificEv(this)

1:S
pecificE

vent:Vignette FSM
Glue

:Vignette
Command
Window

«generated»

1.1:Specific
Event

(state object)

461
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

Though the flow of messages seems complex, it is really quite simple. The window detects an event, passes
it to the FSM for translation to an action, and accepts the action back from the FSM. The rest of the complexity has
to do with separating standard actions known to the framework from specific actions known to the vignette.

Another factor impinging on our decision to partition the classes as we did was our use of SMC to automati-
cally generate the finite-state machine classes. Consider the following description, and refer back to Figure 30-7:

Idle
{
 Measure Measuring MeasureTask
 Erase Erasing StartEraseTask
 Sketch Idle GetSketchChoice
}

Notice that this simple text describes all of the transitions that occur while the state machine is in the Idle
state. The three lines in the braces identify the event that triggers the transition, the target state of the transition,
and the action performed by the transition.

SMC7 accepts text in this form and generates the classes denoted with «generated». The code generated by
SMC requires neither editing nor any inspection.

Using SMC to generate the state machine makes the creation of this part of the event processor for a vignette
quite simple. The developer must write the VignetteCommandWindow with its corresponding implementations
for specific events and actions. The developer must also write the VignetteFSMContext, which simply declares
interfaces for the specific events and actions. And then the developer needs to write the VignetteFSMGlue class,
which simply dispatches actions back to VignetteCommandWindow. None of these tasks are particularly
challenging.

There is one other thing the developer must do. He must write the description of the finite-state machine for
SMC. This state machine is actually rather complicated. The diagram in Figure 30-7 doesn’t do it justice at all. A
real vignette must deal with many dozens of different events, each of which can have remarkably different
behaviors.

Fortunately, most of the vignettes behave in roughly the same way. So we were able to use a standard state-
machine description as a model and make relatively minor modifications to it for each vignette. Thus, each
vignette had its own FSM description.

This approach is somewhat unsatisfying since the FSM description files were very similar. Indeed, there
were several occasions when we were forced to change the generic state machine, which meant that we had to
make identical or nearly identical changes in each of the FSM description files. This is both tedious and error
prone.

We might have invented yet another scheme for separating the generic portion of the FSM description from
the specific portion, but in the end we didn’t feel it was worth the effort. This is a decision we have chided our-
selves for more than once.

The Taskmaster Architecture

We have seen how events get converted into actions and how that conversion is dependent on a relatively complex
finite-state machine. Now we are going to look at how the actions themselves are processed. It should come as no
surprise that the core of each action is also driven by a finite state machine.

Let’s consider the MeasureTask that we discussed in the previous section. The user invokes this task when
he wants to measure the distance between two points. Once invoked, the user clicks on a point in the TaskWindow.
A small cross hair will appear at that point. As the user then moves the mouse around, a stretchable line is drawn

7. SMC, the State Machine Compiler, is freeware available from http://www.objectmentor.com.

462
www.EBooksWorld.ir

A Case for Template Method

from the click point to the current mouse position. Moreover, the current length of that line is displayed in a sepa-
rate message window. When the user clicks for the second time, another cross hair is drawn, the stretchable line
disappears, and the final distance between the two points is displayed in the message box. If the user then clicks
again, the process starts over.

Once the event processor has selected the MeasureTask, as shown in Figure 30-9, the CommandWindow
creates the actual MeasureTask object, which then runs the finite-state machine shown in Figure 30-11.

The MeasureTask begins its life by invoking its init function and then occupying the GetFirstPoint
state. GUI events that occur in the TaskWindow are routed to the task that is currently executing. Thus, when the
user moves the mouse in the TaskWindow, the current task receives a MovePoint message. Notice that, in the
GetFirstPoint state, this does nothing (as expected).

When the user finally clicks in the TaskWindow, a GotPoint event occurs.This causes a transition to the
GetSecondPoint state and invokes the RecordStartPt action. This action will draw the first cross hair and will
also remember the location that the mouse was clicked as the starting point.

In the GetSecondPoint state, a MovePoint event causes the Dragline action to be invoked. This action
sets XOR mode8 and draws a line from the remembered starting point to the current mouse location. It also com-
putes the distance between these two points and displays it in the message window.

MovePoint events occur frequently whenever the mouse is being moved over the TaskWindow, so the
motion of the line, and the length displayed in the message window, will appear to continuously update as long as
the mouse is in motion.

When the user clicks for the second time, we transition back to the GetFirstPoint state and invoke the
RecordEndPt action. This action turns off XOR mode, erases the line between the first point and the current mouse
position, draws a cross hair at the click point, and displays the distance between the starting point and the click
point in the message window.

This sequence of events repeats as long as the user desires. It only terminates when the task is cancelled by
the CommandWindow, probably in response to the user clicking on a command button.

Figure 30-12 shows a somewhat more complex task—that of drawing a “two-point” box. A two-point box is
a rectangle that is drawn on the screen with two clicks. The first click anchors one corner of the box. A stretchable
box then follows the mouse. When the user clicks for the second time, the box is made permanent.

Figure 30-11 Finite-State Machine for the Measure Task.

8. XOR mode is a mode in which the GUI can be placed. It vastly simplifies the problem of dragging stretchable lines or shapes over
existing shapes on the screen. If you don’t understand this, don’t worry about it.

GettingPoints
MovePoint

Get First Point

Get Second Point

GetPoint/
RecordStartPtGetPoint/

RecordEndPt

MovePoint/Dragline

MouseUp DblClick

/Init

Cancel/ClearTask

463
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

As before, the task begins in the GetPoint1 state, after invoking Init. In this state, the motion of the
mouse is ignored. When the mouse is clicked, we transition to GetPoint2 and invoke the RecordPoint1 action.
This action records the click point as the starting point.

In the GetPoint2 state, mouse motion causes the DragBox action to be invoked. This function sets XOR
mode and draws the stretchable box from the starting point to the current mouse position.

When the mouse goes down for the second time, we transition to the WaitingForUp state and invoke
RecordPoint2. This function simply records the final point for the box. It does not cancel XOR mode, erase the
stretchable box, or draw the real box, because we aren’t sure if the box is valid yet.

At this point, the mouse is still down, and the user is about to lift his finger off the mouse button. We need to
wait for this to occur, otherwise some other task might get the mouse-up event and confuse things. While we are
waiting, we ignore any motion of the mouse, leaving the box anchored at the last click point.

Once the mouse comes up, we transition to the AddingBox state and invoke the AddBox function. This func-
tion checks to see if the box is valid. There are many reasons why a box might be invalid. It might be degenerate
(i.e., its first and final points are the same), or it might conflict with something else on the drawing. Each vignette
has the right to reject something that the user has attempted to draw.

If the box is found to be invalid, an Invalid event is generated, and the state machine transitions back to
GetPoint1 while invoking the StartOver function. If, however, the box was found to be valid, then the
BoxAdded event is generated. This causes the CheckComplete function to be called. This is another vignette-
specific function. It determines whether the user should be allowed to continue drawing more boxes or whether the
task should be completed.

There are literally dozens of such tasks in the framework. Each is represented by a derivative of the Task
class. (See Figure 30-13.) Each task has a finite-state machine within it, and they are substantially more complex
than we have been able to show here. Again, each of those state machines was generated by SMC.

Figure 30-13 shows the Taskmaster architecture. This architecture connects the CommandWindow to the
TaskWindow, and creates and manages the tasks that the user has selected.

Figure 30-12 Two-Point Box

Get Point 1

Get Point 2Adding Box

Waiting For Up

GotPoint/
RecordPoint1

GotPoint/
RecordPoint2

MouseUp DblClick

/Init

MovePoint

MovePoint
/DragBox

MouseUp/
AddBox

GettingPoints

Invalid/StartOver

BoxAdded/
CheckComplete

More

Complete/
TaskFinished

Cancel/
ClearTask

464
www.EBooksWorld.ir

Conclusion

The diagram shows the two tasks whose FSMs were depicted in Figures 30-11 and 30-12. Notice the use of
the STATE pattern and the classes generated in each of the tasks. All of these classes, down to Measure-
TaskImplementation and TwoPointBoxImplementation are part of the framework. Indeed, the only classes
that the developer must write are VignetteTaskWindow and the specific derivatives of the task classes.

The classes MeasureTaskImplementation and TwoPointBoxImplementation represent the many dif-
ferent tasks that are contained in the framework. But note that these classes are abstract. There are a few functions,
such as AddBox and CheckComplete, that are not implemented. Each vignette must implement these functions as
needed for their own concerns.

Thus, the tasks contained by the framework govern the bulk of the interactions in all the vignettes. Whenever
a developer needs to draw a box, or an object related to a box, that developer can derive a new task from
TwoPointBoxImplementation. Or whenever he needs to simply place some object on the screen with a single
click, he can override SinglePointPlacementTask. Or if he needs to draw something based upon a polyline,
he can override PolylineTask. And these tasks manage the interactions, perform any needed dragging, and give
the engineer the hooks needed to validate and create the objects he needs.

Conclusion
Of course there is much more that we could have talked about in this chapter. We could have discussed the ele-
ments of the framework that dealt with computational geometry or the bits that dealt with storing and reading the

Figure 30-13 Taskmaster Architecture

Task
«interface»

Measure Task
State

«generated»
Measure Task

FSM

Measure Task
Implementation

Command
Window Task Window

+ MeasureTask()

Vignette
Command
Window

Vignette Task
Window

+ BoxTask()

«generated»
Two Point Box

Task FSM

Two Point Box
Implementation

Specific Task

«generated»
Two Point Box

State

«generated»

+ MouseDown()
+ MouseMove()
+ GotPoint()
+ MouseUp()

Two Point Box
Task

+ RecordPoint1
+ RecordPoint2
+ AddBox
+ DragBox
+ CheckComplete

Measure Task

+ RecordStartPt
+ RecordEndPt
+ DragLine

(state classes)
«generated»

«creates»

«creates»

(state classes)
«generated»

+ AddBox()
+ CheckComplete()

All methods
implemented except
AddBox and
CheckComplete.
All Task interfaces are
delegated to FSM
base class.

465
www.EBooksWorld.ir

Chapter 30 • The ETS Framework

solutions to and from files. We could have discussed the structure of the parameter files that allowed each vignette
application to drive many different variations of the same vignette. Unfortunately, neither space nor time permits.

However, we think we covered the aspects of the framework that were most instructional. The strategies we
employed in this framework can be employed by others to make their own reusable frameworks.

Bibliography

1. Booch, Grady. Object-Oriented Design with Applications. Redwood City, CA: Benjamin Cummings, 1991.
2. Booch, Grady. Object Solutions. Menlo Park, CA: Addison–Wesley, 1996.
3. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.

466
www.EBooksWorld.ir

APPENDIX A

UML Notation I: The CGI Example

The analysis and design of software comprise a process that cries out for some kind of notation. There have been
many attempts at creating such a notation. Flowcharts, data-flow diagrams, entity-relationship diagrams, etc.

The advent of object-oriented programming saw an explosion in notation. There were literally dozens of
competing notations for the representation of object-oriented analyses and designs.

The most popular of these notations were the following:

• Booch 94.1

• OMT (Object Modeling Technique) as described by Rumbaugh, et al.2

• RDD (Responsibility Driven Design) as described by Wirfs-Brock, et al.3

• Coad/Yourdon as described by Peter Coad and Ed Yourdon4

Of these, Booch 94 and OMT were by far the most important. Booch 94 was hailed as a strong design nota-
tion, whereas OMT was considered to be stronger as an analysis notation.

This dichotomy is interesting. In the late 1980s and early 1990s, it was considered one of the advantages of
object orientation that analysis and design could be represented by the same notation. Possibly, this was a reaction
to the strong separation between the notations for structured analysis and structured design. Crossing the chasm
from structured analysis to structured design was well known to be difficult.

When object-oriented notations first exploded upon the scene, it was felt that the same notation would serve
both analysis and design. Yet as the decade progressed, analysts and designers began to migrate to their favorite
notations. Analysts tended to favor OMT, and designers tended to favor Booch 94. Thus, it appeared that one nota-
tion would not really suffice. A notation tuned for analysis was not appropriate for design, and vice versa.

The UML is a single notation, but it has broad applicability. Parts of the notation are usable for analysis;
other parts are usable for design. Thus, both analysts and designers can use the UML.

In this chapter, we will be presenting the UML notation from both views. First we will describe an analysis,
and then we will go on to describe a design. This description will take place in the form of a miniature case study.

1. [BOOCH94].

2. [RUMBAUGH91].

3. [WIRFS90].

4. [COAD91A].

From Appendix A of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

467
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

Please note that this ordering of analysis first, and then design, is artificial, and is not intended as a recom-
mendation. Indeed, none of the other case studies in this book makes the distinction between the two. I have pre-
sented it this way here simply to illustrate how UML can be used at different levels of abstraction. In a real project
all levels of abstraction are produced concurrently—not in sequence.

Course Enrollment System: Problem Description
Suppose that we are working for a company that offers professional training courses in object-oriented analysis
and design. The company needs a system that keeps track of the courses being taught and the students that are
enrolled. See the “Course Enrollment System” sidebar.

Course Enrollment System
Users must be able to view a menu of the available course offerings and select the course in which they
wish to enroll. Once selected, a form should pop up that allows the user to enter the following
information:

• Name
• Phone number
• Fax number
• e-mail address

There should be a way for the user to select the manner in which he wants to pay for the course. Those
methods may be one of the following:

• Check
• Purchase order
• Credit card

If the user wishes to pay by check, then the form should prompt him for the check number.

If the user wishes to pay by credit card, then the form should prompt him for the credit card number,
expiration date, and the name as it appears on the card.

If the user wishes to pay by purchase order, then the form should prompt him for the purchase order
number (PO#), the name of the company, and the name and phone number of someone in the accounts
payable department.

Once all this information has been filled out, the user will click on a ‘submit’ button. Another screen
will pop up, which summarizes all the information that the user entered. It will instruct the user to
print the screen, sign the printed copy, and fax it to the number of the enrollment center.

It should also e-mail an enrollment summary to our enrollments clerk and to the user.

The system will know the maximum number of students for each class, and will automatically mark
the class offering as “Sold Out” once that limit has been hit.

The enrollments clerk will be able to e-mail messages to all students enrolled in a given course by
bringing up a special form and selecting the course. This form will allow the clerk to type a message
and then hit a button that will send it to all students currently enrolled in the selected course.

(continues on next page)

468
www.EBooksWorld.ir

Course Enrollment System: Problem Description

Identifying Actors and Use Cases. One of the tasks of requirements analysis is to identify the actors and
use cases. It should be noted that in a real system, these are not necessarily the first tasks that are appropriate. But
for the purposes of this chapter, they are where I choose to begin. In reality, the place you begin is less important
than the act of beginning.

Actors

Actors are entities that interact with the system, but are outside the system. Often they are roles played by the users
of the system. Sometimes, however, they can be other systems. In this example, all the actors correspond to human
users.

Enroller. This actor enrolls a student in a course. It interacts with the system to select the appropriate
course and enter the information about the student and the method of payment.

Enrollment Clerk. This actor receives e-mail notification of each enrollment. It also sends e-mail notices
to students and receives reports about enrollments and payments

Student. This actor receives e-mail confirmation of enrollment and email notifications from the Enroll-
ment Clerk. The Student attends the courses it is enrolled in.

Use Cases

Having determined the actors, we specify the interactions of these actors with the system. These specifications are
called “use cases.” A use case describes the interaction between an actor and the system from the actor’s point of
view. None of the inner workings of the system are discussed, nor is the user interface described in any detail.

Use Case #1: View Menu of Courses. The Enroller requests a list of courses
that are currently available in the course catalog. The system displays the list of
courses. Included in that list are the name, time, place, and cost of the course. The
list will also show the number of students allowed in the course and whether or not
the course is currently sold out.

Use Case Notation. The above diagram shows an actor and a use case within a use-case diagram. The
actor is the little stick figure, and the use-case is the ellipse. The two are bound together by an association that
shows the direction of the data flow.

Use Case #2: Enroll in a course. The Enroller first views the menu of courses
(Use Case #1). The Enroller selects a course for enrollment from the menu. The
system prompts the Enroller for the name, phone number, fax number, and email
address of the student. The system also prompts the Enroller for the preferred pay-
ment method.

Extension point: fill out payment method
The Enroller submits the enrollment form. The Student and the Enrollment Clerk
are sent email confirming the enrollment. The Enroller is shown a confirmation of
the enrollment and is asked to print that confirmation, sign it, and fax it to a spe-
cific fax number.

The enrollments clerk will also be able to bring up a form that shows the status of all students for
classes that have already been taught. The status will indicate whether or not the student was in atten-
dance and whether or not the student’s payment has been received. This form can be brought up on a
course-by-course basis. Or the enrollments clerk can ask to see a list of all students who have out-
standing balances.

View Menu of
courses

Enroller

Enroll in a course
Extension Points:

fill out payment
method

View Menu of
courses

Enroller

Student Enrollment Clerk

«include»

469
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

Extending and Using Use Cases. Use Case #2 has an extension point. This means that other use cases
will be extending this use case. The extending use cases are presented below as #2.1, #2.2, and #2.3. Their descrip-
tions are inserted into the previous use case at the extension point. They describe the optional data that need to be
entered depending on the selected payment method.

Use Case #2 also has a «include» relationship with Use Case #1, “View Menu of Courses.” This means that
the description of Use Case #1 is inserted into the appropriate location of Use Case #2.

Note the difference between extending and including. When one use case includes another, the including use
case references the included use case. However, when one use case extends another, neither use case refers to the
other. Instead, an extending use case is selected based upon context and is inserted into the extended use case at the
appropriate point.

We use the «include» relationship when we want to make the structure of the use cases more efficient by col-
lapsing repeated operations into smaller use cases that can be shared among many other use cases. The goal is to
manage change and eliminate redundancy. By moving the common parts of many use cases into a single included
use case, when the requirements of that common part change, only the single included use case must change.

We use the «extend» relationship when we know that there are many alternatives or options within a use
case. We separate the invariant part of the use case from the variable parts. The invariant part becomes the use case
that is extended, and the variable parts become the extending use cases. The goal, once again, is change manage-
ment. In the current example, if new payment options are added, new extending use cases will have to be created,
but no existing use cases need to be modified.

Notation for the «include» Relationship. The diagram for Use Case #2 shows that the “Enroll in a
Course” use case is bound to the “View Menu of Courses” use case by a dashed line that terminates in an open
arrowhead. The arrowhead points at the included use case and has the stereotype «include».

Use Case #2.1: Pay by Purchase Order. The Enroller is prompted for
the PO#, the name of the company, and the name and phone number of
someone in the accounts-payable department.

Use Case #2.2: Pay by Check. The Enroller is prompted for the check

number.

Use Case #2.3: Pay by Card. The Enroller is prompted for the credit card

number, expiration date, and the name as it appears on the card.

Notation for Use-Case Extension. The extending use cases shown above
are connected to the extended use case through «extend» relationships. This
relationship is drawn as a line that connects the two use cases. Once again,
dashed, the line has an open arrowhead. The arrowhead points at the
extended use case and has the stereotype «extend».

Use Case #3: Email Messages to Students. The Enrollment Clerk selects
a course and enters the text of a message. The system sends the message to
the e-mail addresses of all the students currently enrolled in that class.

Pay by Card

Pay by
Check

Enroll in a
course

Enroller

Pay By PO

«extend»

email
messages to

students

Enrollment Clerk

Student

470
www.EBooksWorld.ir

Course Enrollment System: Problem Description

Use Case #4: Set Attendance. The Enrollment Clerk selects a class and
a student that is currently enrolled in that class. The system presents the
student and shows whether that student was in attendance and whether or
not that student’s payment has been received. The Enrollment Clerk may
then change the attendance or payment status.

Use Case #5: Get Student Status. The Enrollment Clerk selects the
students of interest.

Extension Point: ‘select students of interest’
The system presents the attendance and payment status of the selected stu-
dents in a single report.

Extensions There are two use cases that extend Get Student Status.

Use Case #5.1: Select Students in a Course. The system shows a list
of all the courses. The Enrollment Clerk selects a course. The system
selects all students in that course.

Use Case #5.2: Select Unpaid Students. The Enrollment Clerk indicates that the system should select
all unpaid students. The system selects all students who have been marked in attendance and whose payment status
indicates that payment has not been received.

Use-Case Reprise. The use cases we have created here describe how the users expect the system to
behave. Notice that they do not talk about the details of the user interface. They don’t mention icons, menu items,
buttons, or scrolling lists. Indeed, even the original specification said more about the user interface than the use
cases do. This is intentional. We want the use cases to be lightweight and easy to maintain. As written, these use
cases are valid for an extremely large set of possible implementations.

System-Boundary Diagram. The entire set of use cases can be shown in summary by the system-
boundary-diagram in Figure A-1. This diagram shows all the use cases in the system surrounded by a rectangle
that represents the system boundary. The actors are set outside the system and are connected to the use cases with
associations that show the direction that data flows.

Figure A-1 System-Boundary Diagram

Set
Attendance

Enrollment Clerk

Select
students in a

course

Select unpaid
students

Enrollment Clerk

Get
Student Status

extension points:
select students

of interest

«extend»

View Menu
of Courses

Course Enrollment System

Enroll in a
Course

Set
Attendance

Email
Messages to

Students

Get Student
Status

Enroller

Student
Enrollment Clerk

«include»

471
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

What Do We Use these Diagrams for? Use-case diagrams, including system-boundary-diagrams, are
not software-structure diagrams. They do not give us any information at all about the partitioning of the software
elements of the system to be created. These diagrams are used for human communication, primarily between the
analysts and the stakeholders. They help to organize the functionality of the system in terms of the different kinds
of system users.

Moreover, these diagrams can be quite helpful when presenting the system description to the various kinds
of users. Each different kind of user is interested chiefly in his own use cases. The connection of the actors to the
use cases serves to focus each different kind of user on the use cases that he or she will be using. In very large sys-
tems, you may wish to organize the system boundary diagrams according to actor type so that all different user
types can look at the subset of use cases that concerns them.

Finally, remember Martin’s first law of documentation: Produce no document unless its need is immediate
and significant.

These diagrams can be useful, but they are often unnecessary. You should not think of them as required or
essential. If you have a need for them, then draw them. Otherwise, wait until you have a need.

The Domain Model

The domain model is a set of diagrams that helps to define the terms that appear in the use cases. These diagrams
show the key objects within the problem and their interrelationships. Much pain and suffering have resulted from
the tendency to assume that this model is also a model of the software to be built. It is important for both the ana-
lyst and the designer to realize that a domain model is a descriptive tool that is used to help humans record their
decisions and communicate with each other. The objects in the domain model do not necessarily correspond to the
object-oriented design of the software, nor would such a correspondence be a strong benefit.5

In Booch 94 and OMT, domain-model diagrams were indistinguishable from diagrams that represented soft-
ware structure and design. In the worst cases, the domain model diagrams were taken to be high-level design doc-
uments and were therefore used to set the high-level structure of the software itself.

To help avoid this kind of mistake, we can take advantage of the features of UML and use a special kind of
entity called a «type» in domain models. A «type» represents a role that an object can play. A «type» can have
operations and attributes as well as associations with other «type» entities. However, a «type» does not represent a
class or object in the design sense. It does not represent an element of software, and it does not map directly to
code. It represents a conceptual entity used in the description of the problem.

The Course Catalog. The first domain abstraction we will consider is the course catalog. This
abstraction represents the list of all the courses that are offered. We show this in the domain model (see Fig-
ure A-2) for the Course Catalog entity by depicting two entities that represent abstractions in the domain:
the CourseCatalog entity and the Course entity. The CourseCatalog entity offers many Course entities.

Domain-Model Notation. The notation used in Figure A-2 depicts the two domain abstractions as
UML classes with the «type» stereotype. (See sidebar, “Overview of UML Class Notation and Semantics.”) This
indicates that the classes are conceptual elements of the problem domain and not directly related to software

5. [JACOBSON], p. 133, “We do not believe that the best (most stable) systems are built by only using objects that correspond to real-life
entities...”

And also on p. 167, “In [other] methods, this [domain] model will also form a base for the actual implementation; that is, the objects are
directly mapped onto classes during implementation. However, this is not the case in OOSE, [...]. Our experience with such an
approach tells us differently. Instead we develop an analysis model that is more robust and maintainable in the face of future changes
rather than using a problem domain model to serve as the base for design and implementation.

[BOOCH96], p. 108, “...there is a tendency in immature projects to consider the domain model resulting from analysis as ready to code
[...], thus skipping any further design. Healthy projects recognize that there is still quite some work to do, involving issues such as con-
currency, serialization, safety, distributions, and so on, and that the design model may end up looking quite different in a number of
subtle ways.

472
www.EBooksWorld.ir

Course Enrollment System: Problem Description

classes. Notice that the CourseCatalog entity has two operations: AddCourse and RemoveCourse. In a «type»,
operations correspond to responsibilities. Thus, the CourseCatalog has the responsibility to be able to add and
remove courses. Again, these are concepts, not the specifications of member functions within real classes. We use
them to communicate with users, not to specify a software structure.

By the same token, the attributes shown in the Course entity are concepts. They indicate that the Course
entity should be responsible to remember its fee, enrollment limit, and current enrollment.

Figure A-2 Domain model for the Course Catalog entity

Overview of UML Class Notation and Semantics
In UML, a class is drawn as a rectangle with three compartments. The first compartment specifies the
name of the class. The second specifies its attributes and the third its operations.

Within the name compartment, the name can be modified by a stereotype and by properties. The ster-
eotype appears above the name and is enclosed within guillemets (French quotation marks «»). Prop-
erties appear below and to the right of the name and are enclosed within braces. (See the following
diagram.)

Stereotypes are names that refer to the “kind” of UML class being represented. In UML, a class is sim-
ply a named entity that can have attributes and operations. The default stereotype is «implementation
class» in which case the UML class corresponds directly to the software notion of a class in a language
like C++, Java, Smalltalk, or Eifel. The attributes correspond to member variables, and the operations
correspond to member functions.

However, with the stereotype of «type», a UML class does not correspond to a software entity at all.
Rather it corresponds to a conceptual entity that exists in the problem domain. The attributes represent
the information that logically belongs to that conceptual entity, and the operations represent the
responsibilities of that conceptual entity.

There are several other predefined stereotypes that we will be discussing later in this chapter. You are
free to create your own stereotypes, too. However, a stereotype is more than just a comment. It speci-
fies the way that all elements of a UML class should be interpreted. So if you make a new stereotype,
define it well.

(continues on next page)

Course Catalog
«type»

Add Course()
Remove Course()

Course
«type»

fee : Currency
enrollment limit : integer
current enrollment : integer

offers 0..n

Name
«stereotype»

operation()

attribute : type

{boolProperty,
valueProperty=x}

473
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

Concept vs. Implementation and the Use of Cloud Icons. I have been placing a lot of stress upon the
difference between a class at the conceptual level (i.e., a «type») and a class at the design or implementation level.
I feel that this is appropriate because of the danger that conceptual diagrams might be mistaken as specifications
for the structure and architecture of the software. Remember, conceptual diagrams are to help communications
with the stakeholders and are therefore devoid of all the technical issues of software structure.

The use of stereotypes to distinguish between these kinds of diagrams could be overlooked. UML classes for
domain models look very much like UML classes for design and implementation. Fortunately, UML allows us to
substitute different icons for different stereotypes. Therefore, to further enhance the difference between these kinds
of diagrams, we will use a cloud icon to represent «type» classes from now on. This changes the domain model for
the Course Catalog entity in Figure A-2 to look like Figure A-3.

Completing the Domain Model. So far, the domain model shows a course catalog that contains all the
offered courses. But there is a problem here. What do we mean by a course? The same course can be offered at
many different times and locations, and it can be taught by many different instructors. Clearly we need two dif-
ferent entities. Let’s call the first a Course. It represents the course itself, but not the dates, locations, or instruc-
tors. Let’s call the second a Session. It represents the date, location, or instructor for a specific course. (See
Figure A-4.)

Notation. The lines that connect the entities are called associations. All the associations in Figure A-4 are
named, although this is not a rule. Notice that the names are verbs or verb phrases. The little black triangle next to
the name points at the predicate of the sentence formed by the two entities and the association. Thus, “Course Cat-
alog offers many Courses,” “Session Schedule schedules many Sessions,” and “Many students are enrolled in a
Session.”

I used the word “many” in the previous sentences wherever the “0..*” icon was present on the correspond-
ing relationship. This icon is one of several different multiplicity icons that can be placed on the end of an associa-
tion. They indicate the number of entities that participate in the association. The default multiplicity is “1.” (See
the sidebar entitled: “Multiplicities.”)

Properties are primarily structured comments. Properties are specified in a comma-separated list
between braces. Each property is a name = value pair separated by an equal sign (=). If the equal sign
is omitted, then the property is assumed boolean and given the value of “true.” Otherwise the type of
the value is a string.

There are several predefined properties that we will be discussing later in this chapter. However, you
are free to add your own at any time. For example, you might create properties like this: {author=Rob-
ert C. Martin, date=12/6/97, SPR=4033}

Figure A-3 Domain Model for Course Catalog using Cloud Icons

Course Catalog

AddCourse
RemoveCourse

offers

0..n

Course
fee : currency
enrollmentLimit
currentEnrollment

474
www.EBooksWorld.ir

Course Enrollment System: Problem Description

Associations are assumed to be bidirectional unless there is an arrowhead present. A bidirectional associa-
tion allows the two entities to know about each other. For example, it is clear that the CourseCatalog entity
ought to know about its Courses, and it seems reasonable that each Course entity could know about the
CourseCatalog it is listed in. The same is true for the SessionSchedule and the Session.

The presence of an arrowhead restricts the knowledge to the direction indicated. Thus, Sessions know
about Courses, but Courses do not know anything about Sessions.

Use Case Iterations. This diagram immediately tells us two things. First, the use cases employ the wrong
language in a number of places. Where they talk about course catalogs and courses, they should be talking about
session schedules and sessions. Secondly, there are quite a few use cases that were left out. The CourseCatalog
and the SessionSchedule need to be maintained. Courses need to be added and removed from the
CourseCatalog, and Sessions need to be added and removed from the SessionSchedule.

Figure A-4 Courses and Sessions

Multiplicities
There are several multiplicity icons that can be used to adorn associations. They include the following:

• 0..* zero to many
• * zero to many
• 1..* one to many
• 0..1 zero or one
• 6 exactly six
• 3..6 between three and six
• 3,5 three or five

Any nonnegative integers can be used between dots or separated by commas.

Course Catalog

AddCourse()
RemoveCourse()

version : date
offers

0..n

Course
fee : currency
enrollment limit

Session Schedule

AddSession()
RemoveSession() AddStudent()

RemoveStudent()

schedules
0..n

0..n

Session
session date
current enrollment
instructor

teaches

Student
paid : bool
attended : bool

enrolled in

475
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

Thus, by creating a domain model, we better understand the problem at hand. That better understanding
helps us to improve and augment the use cases. This iteration between the two is natural and necessary.

If we were pursuing this case study to its conclusion, we would show the changes implied above. But in the
interest of efficiently presenting the notation, we will skip the iteration of the use cases.

The Architecture

Now we get down to the business of designing software. The architecture represents the software structures that
form the skeleton of the application. The classes and relationships of the architecture map very closely to code.

Deciding the Software Platform. Before we can begin, however, we must understand the software plat-
form in which this application is going to run. We have a number of choices.

1. A Web-based CGI application. The enrollment and other forms would be accessed by a Web browser. The
data would reside at the Web server, and CGI scripts would be invoked by the Web browser to access and
manipulate the data.

2. A database application. We could purchase a relational database and use the forms package and 4GL to write
the application.

3. Visual XXX. We could purchase a visual programming language. The human interface could be created
using the visual construction tools. These tools would invoke the software functions needed to store, retrieve,
and manipulate the data.

There are, of course, other options. We could write the whole thing in C without any library or tool support
other than the compiler. But this would be silly. The tools are there, and they work. We should use them.

For the purposes of our example, we will assume a Web-based application. This makes sense since then
enrollers can be located anywhere in the world; and the enrollment service can be offered on the Internet.

Web Architecture. We need to decide the overall architecture of the Web applications. How many Web
pages will there be, and what CGI programs will they invoke? Figure A-5 shows how we might begin to specify
this.

Notation. Figure A-5 is a component diagram. The icons depict physical software components. We have
used the stereotype to specify the kind of components. The diagram shows that the Session Menu is displayed as
an HTML Web page that is generated by a CGI program called the Session Menu Generator. The dashed arrow
between the two components is a dependency relationship. Dependency relationships denote which components
have knowledge of other components. In this case, the Session Menu Generator program creates the Session Menu
Web page, and therefore has knowledge of it. The Session Menu Web page, on the other hand, has no knowledge
of the generator itself.

Custom Icons. There are two different kinds of components in Figure A-5. To make them visually dis-
tinct, we extend UML with two new icons—one for CGI programs and one for HTML pages. Figure A-6 shows
the components involved in Use Case #2: Enroll in a course. Web pages are drawn as pages with a ‘W’ in them.
CGI programs are drawn as Circles with “CGI” in them.

Figure A-5 Session Menu Architecture

Session Menu

«html»
Session Menu

Generator

«cgi»

476
www.EBooksWorld.ir

Course Enrollment System: Problem Description

Component Flow. Figure A-6 introduces two new Web pages and one new CGI program. We have
decided that the application should begin with a banner page of some kind. Presumably, this page will have links
for the various kinds of operations that users can perform. The Session Menu Generator is invoked by the banner
page and generates the Session Menu page. Presumably the Session Menu page has links or buttons that allow the
user to enroll in a course. The Session Menu invokes the Enrollment Form Generator CGI to create the form nec-
essary for enrolling in the selected course. Once the user fills out this form, the Enroll CGI is invoked. This pro-
gram validates and records the information on the form. If the form data are invalid, it generates the Enrollment
Error page; otherwise it generates the confirmation page and sends the necessary e-mail messages. (Refer back to
Use Case #2.)

Enhancing Flexibility. The astute reader will have recognized that there is a rather nasty inflexibility
built into this component model. The CGI programs generate most of the Web pages. This means that the HTML
text within the Web pages must be contained within the CGI programs. This makes modifying the Web pages a
matter of modifying and rebuilding the CGI programs. We would rather the bulk of the generated Web pages were
created with a nice HTML editor.

Thus, the CGI programs should read in a template of the Web pages that they are going to generate. The tem-
plate should be marked with special flags, which will be replaced with the HTML that the CGI programs must
generate. This means that the CGI programs share something in common. They all read template HTML files and
add their own bits of HTML to them.6

Figure A-7 shows the resultant component diagram. Notice that I have added a WT icon. This represents an
HTML template. It is a text file in HTML format with the special marks that the CGI programs use as insert points
for the HTML that they generate. Notice also the direction of the dependency relationships between the CGI pro-
grams and the HTML templates. They might appear backwards to you. But remember they are dependency rela-
tionships, not data flows. The CGI programs know about (depend on) the HTML templates.

Figure A-6 Enrollment Components

6. This chapter was written long before XSLT came on the scene. Nowadays, we’d likely solve the problem by having the CGI scripts (or
servlets) generate XML and then invoke an XSLT script to translate that into HTML. On the other hand, generating HTML with XSLT
still doesn’t give us the ability to design our Web pages with a nice WYSIWYG editor. Sometimes I think the template scheme outlined
in this chapter would be better in many instances.

W CGI CGI

CGI

W

W

W

W

Banner
Session Menu

Generator
Session Menu

Enrollment Form
Generator

Enrollment Error

Enrollment
Confirmation

Enrollment FormEnroll

477
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

The Specification/Instance Dichotomy. In Figure A-7, the names of the generated Web pages are
underlined. This is because these pages only exist at run time. They are instances of the HTML templates. In
UML, the convention is that we underline instances. An instance is a software element that is generated from a
specification (source document) of some kind. We’ll have more to say about this later. For now, simply realize
that the elements whose names are not underlined represent elements that must be written by hand and that act
as specifications. Elements whose names are underlined are the product of some process that generates them
from those specifications.

Using the HTML Templates. The HTML templates provide a great deal of flexibility to the architecture
of this application. How do they work? How do the CGI programs place their generated output in the proper places
within the HTML Templates?

We might consider placing a special HTML tag in the HTML template files. Such a tag would mark the posi-
tion in the generated HTML file where the CGI program would insert its output. However, these generated Web
pages may have several sections, each of which might require its own insertion point into which the CGI can insert
HTML. Thus, each HTML template could have more than one insertion tag, and the CGI will have to be able to
somehow specify which output goes with which tag.

The tag could look like this: <insert name> where “name” is an arbitrary string that identifies the insertion
point to the CGI. A tag such as <insert header> will allow a CGI to specify the name ‘header’ and then com-
pletely replace the tag with generated output.

Clearly each tag is replaced with a string of characters, so each tag represents a kind of named stream of
characters. We can imagine the kind of C++ code that might exist in the CGI as follows:

Figure A-7 Adding HTML templates to the Enrollment Component Diagram

Banner

W

WT WT

WT WT

CGI CGI

CGI

W

W

W

W

Session Menu Enrollment Form

Session Menu
Generator Session Menu

Enrollment Form
Generator

Enrollment Error

Enrollment
Confirmation

Enrollment
Confirmation

Enrollment Form

Enrollment Error

Enroll

478
www.EBooksWorld.ir

Course Enrollment System: Problem Description

HTMLTemplate myPage(“mypage.htmp”);
myPage.insert(“header”,
 “<h1> this is a header </h1>\n”);
cout << myPage.Generate();

This would send HTML to cout that was generated from the template mypage.html in which the tag
<insert header> was replaced with the string “<h1> this is a header </h1>\n”.

Figure A-8 shows how we might design the HTMLTemplate class. This class holds the name of the template
file as an attribute. It also has methods that allow replacement strings to be inserted for specifically named inser-
tion points. Instances of HTMLTemplate will contain a map that relates the insertion point name to the replacement
string.

Notation. This is our first true class diagram. It shows us two classes related with a composition relation-
ship. The icon used for the HTMLTemplate class and the map<string,string> class is not new to us. It was
explained in the sidebar named “Overview of UML Class Notation and Semantics” on page 473. The syntax of the
attributes and operations is described below in the sidebar entitled, “Attributes and Operations.”

The arrowhead on the association that connects the two classes in Figure A-8 indicates that HTMLTemplate
knows about map<string,string>, but that the map does not know about the HTMLTemplate. The black dia-
mond on the end of the association nearest the HTMLTemplate class identifies this as a special case of association
called composition. (See the sidebar entitled, “Association, Aggregation, and Composition.”) It indicates that
HTMLTemplate is responsible for the lifetime of the map class.

Figure A-8 HTMLTemplate design

Attributes and Operations
Attributes and operations can be adorned with the following encapsulation specifiers:

+ Public
- Private
Protected

The type of an attribute can be specified as an identifier that follows the attribute and is separated from
it with a colon (e.g., count : int).

Similarly, the types of the arguments of a function are specified using the same colon notation (e.g.,
SetName (name : string)).

Finally, the return type of an operation can be specified with an identifier that follows the name and
argument list of the operation and is separated from it by a colon (e.g., Distance(from : Point)
: float).

HTMLTemplate

- itsFile : string
+ Insert(name : string, replacement : string)
+ Generate() : string

map<string,string>

479
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

Association, Aggregation, and Composition
An association is a relationship between two classes that allows instances created from those classes to
send messages to each other. (i.e., links may exist between objects whose classes are associated). It is
denoted by a line that connects the two classes. Associations are most often implemented as instance
variables in one class that point or refer to the other.

Association

The navigability of an association can be restricted by adding arrowheads to the associations. When an
arrowhead is present, the association can only be navigated in the direction of the arrow. This means
that the class to which the arrow points does not know about its associate.

Navigable Association

Aggregation is a special form of association. It is denoted with a white diamond on the aggregate
class. Aggregation implies a “whole/part” relationship. The class adjacent to the white diamond is the
“whole,” and the other class is its “part.” The “whole/part” relationship is purely connotative; there is
no semantic difference from associationa.

Aggregation

Composition is a special form of aggregation. It is denoted with a black diamond. It implies that the
“whole” is responsible for the lifetime of its “part.” This responsibility does not imply either creation
or deletion responsibility. Rather, it implies that the “whole” must see to it that the “part” is somehow
deleted. That can be accomplished by directly deleting the “part,” or by passing the “part” to another
entity that assumes responsibility for it.

Composition

a. With one exception. Reflexive or cyclic aggregation relationships between objects is not allowed. That is, instances cannot partici-
pate in a cycle of aggregations. If this rule were not in place, all instances in the cycle would be part of themselves. That is, a part
could contain its whole.

Note that this rule does not prevent classes from participating in a cycle of aggregations; it simply restricts their instances.

Employer Employee

Modem Dialler

Family Person

Receiver Message Buffer

480
www.EBooksWorld.ir

Course Enrollment System: Problem Description

The Database Interface Layer. Each CGI programs must also have access to the data that represent the
courses, classes, students, etc. We shall call this the training database. The form of this database is, as yet, unde-
cided. It could be held in a relational database or in a set of flat files. We do not want the architecture of our appli-
cation to depend on the form in which the data are stored. We would like the bulk of each application to remain
unchanged when the form of the database changes. Thus, we will shield the application from the database by inter-
posing a database interface layer (DIL).

In order to be effective, a DIL must have the special dependency characteristics shown in Figure A-9. The
DIL depends on the application, and the DIL depends on the database. Neither the application nor the database has
any knowledge of each other. This allows us to change the database without necessarily changing the application.
It also allows us to change the application without changing the database. We can completely replace the database
format or engine without affecting the application.

Notation. Figure A-9 shows a special kind of class diagram called a “package diagram.” The icons denote
packages. Their shape is reminiscent of a file folder. Like a file folder, a package is a container. (See the “Packages
and Subsystems” sidebar.) The packages in Figure A-9 contain software components such as classes, HTML files,
CGI main program files, etc. The dashed arrow that connects the packages represents a dependency relationship.
The arrowhead points at the target of the dependency. A dependency between packages implies that the dependent
package cannot be used without the package on which it depends.

Figure A-9 Database Interface Layer Dependency Characteristics

Packages and Subsystems
Packages are drawn as a large rectangle with a smaller rectangular “tab” on the upper left of the large
rectangle. Normally, the name of the package is placed in the large rectangle.

Packages can also be drawn with the package name in the “tab” and the contents of the package in the
large rectangle. The contents may be classes, files, or other packages. Each can be prefixed with the (-,
+, #) encapsulation icons to denote that they are private, public, or protected within the package.

Packages may be connected by one of two different relationships. The dashed dependency arrow is
called an import dependency. It is a dependency relationship with a stereotype of «import». This

(continues on next page)

Training
Application

Training
Database

Training DIL

aPackage

aPackage

+ aPublicClass
- aPrivateClass
aProtClass

481
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

Database Interface. The classes within the Training Application package need some way to access the
database. This will be accomplished through a set of interfaces inside the Training Application package. (See Fig-
ure A-10.) These interfaces represent the types in the domain model of Figure A-4 on page 475. The interfaces are
implemented by classes in the DIL package. They will be used by the other classes within the Training Application

stereotype is the default when a dependency is used with a package. The base of the arrow is attached
to the importing package, and the arrowhead touches the imported package. An import dependency
implies that the importing package has visibility to any of the public elements of the imported pack-
age. This means that the elements of the importing package can use any public element of the
imported package.

Packages can also be connected with Generalization relationships. The open triangular arrowhead
touches the general or abstract package, and the other end of the relationship touches the implement-
ing package. The implementing package has visibility to any public or protected element of the
abstract package.

There are several defined stereotypes of package. The default is «package», which denotes a container
without any special constraints. It can hold anything that can be modeled in UML. Typically, it is used
to denote a physical, releaseable, unit. Such a package would be tracked in a configuration manage-
ment and version control system. It might be represented by subdirectories in a file system or by the
module system of a language (e.g., Java packages or JAR files). Packages represent a partitioning of
the system that enhances its developability and releasability.

The «subsystem» stereotype for packages denotes a logical element that, in addition to containing
model elements, also specifies their behavior. A subsystem can be given operations. Those operations
must be supported by use cases or collaborations within the package. Subsystems represent a behav-
ioral partitioning of a system or application.

These two kinds of packages are orthogonal to each other. The partitioning that enhances developabil-
ity and releasability is almost never similar to a partitioning that is based upon behavior. The former is
often used by software engineers as the unit of configuration management and version control. The lat-
ter is used more often by analysts in order to describe the system in an intuitive fashion and to perform
impact analyses when features change or are added.

Imported

Importing

Abstract

Implementing

aPackage aSubsystem
«subsystem»

482
www.EBooksWorld.ir

Course Enrollment System: Problem Description

package to access the data in the database. Notice that the direction of the dependencies in Figure A-10 corre-
sponds to the direction of the import relationships between the packages in Figure A-9.

Notation. When the name of a class is written in italics, it indicates that the class is abstract.7 Since inter-
faces are completely abstract classes, it is appropriate to italicize their names. The operations are also shown in
italics to denote that they are abstract. The classes in the DIL are bound to the interfaces through realizes relation-
ships, which are drawn as dashed lines with open triangular arrowheads pointing at the interfaces. In Java, these
would represent “implements” relationships. In C++, they would represent inheritance.

Interfaces are physical structures. In languages like C++ and Java, they have source code counterparts.
Types, on the other hand, are not physical and do not represent something that has a source-code equivalent. In
Figure A-10, we have drawn realizes relationships from the interfaces to the types that they represent. This does
not represent a physical relationship, nor is there any corresponding source code. In this case, the realizes relation-
ship is showing the correspondence between the physical design entities and the domain model. This correspon-
dence is seldom as clear-cut as depicted here.

The imports relationships between the packages in Figure A-9 are shown in Figure A-10 through the use of
the double colon. The DIL::Session class is a class named Session that exists in the DIL package and is visible
to (has been imported into) the TrainingApplication package. The fact that there are two classes named
Session is acceptable since they are in different packages.

The Session Menu Generator. Referring back to Figure A-7, we see that the first CGI program is the
SessionMenuGenerator. This program corresponds to the very first use case back on page 469. What does the
design of this CGI program look like?

Clearly it must build an HTML representation of the session schedule. Thus, we will need an
HTMLTemplate that merges the boiler plate of the session menu with the actual data from the session schedule.
Also, the program will use the SessionSchedule interface to access the Session and Course instances in the
database in order to get their names, times, locations, and fees. Figure A-11 shows a sequence diagram that
describes the process.

Figure A-10 Database interface classes in the Training Application package

7. An abstract class has at least one pure (or abstract) method.

Session
Schedule Session Course

DIL::Session Schedule DIL::Session

Session
«interface»

Course
«interface»

+ GetCourse() : Course
+ GetDate() : Date
+ GetLocation() : string
+ GetTime() : Time

+ GetCourseName() : string
+ GetCost() : float

+ GetSessionIterator() : iterator<Session>

Session Schedule
«interface»

DIL::Course

483
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

The SessionMenuGenerator object is created by main and controls the entire application. It creates an
HTMLTemplate object passing it the name of the template file. It then fetches an iterator<Session>8 object
from the SessionSchedule interface. It loops through every Session in the iterator<Session> asking each
Session for its Course. It fetches the time and location of the course from the Session object, and the name and
cost of the course from the Course object. The last action in the loop is to create a line item from all that informa-
tion and Insert it into the HTMLTemplate object at the Schedule insertion point. When the loop is completed,
the SessionMenuGenerator invokes the Generate method of the HTMLTemplate and then destroys it.

Notation. The names within the rectangles on the sequence diagram in Figure A-11 are underlined. This
indicates that they represent objects rather than classes. Object names are composed of two elements separated by
a colon. Prior to the colon is the simple name of the object. Following the colon is the name of a class or interface
that the object implements. In Figure A-11, the simple names are all omitted, so all the names begin with a colon.

The dashed lines hanging down from the objects are called lifelines, and they represent the lifetime of the
objects. All the objects in Figure A-11, except HTMLTemplate and iterator<Session>, show lifelines that start
at the top and end at the bottom. By convention, this means that those objects were in existence before the scenario
began and remain in existence when the scenario ends. HTMLTemplate, on the other hand, is explicitly created
and destroyed by SessionMenuGenerator. This is evident by the arrow that terminates on HTMLTemplate, thus
creating it, and the “X” that terminates its lifeline at the bottom. SessionMenuGenerator also destroys Iter-
ator<Session>; however, it is not clear what object creates it. The creator is probably a derivative of
SessionSchedule. Thus, while Figure A-11 does not explicitly show the creation of the Iterator<Session>
object, the position of the start of the object’s lifeline implies that it is created at about the time that the
GetSessionIterator message is sent to the SessionSchedule object.

The arrows that connect the lifelines are messages. Time proceeds from top to bottom, so this diagram shows
the sequence of messages that are passed between the objects. The messages are named by labels close to the

Figure A-11 SessionMenuGenerator Sequence Diagram

8. This chapter was written before STL was commonplace. At the time I was using my own container library, which had templated
iterators.

Sessionlterator

Course

Session

GetNext

GetSessionlterator
template

Create

GetCourse

Destroy
Destroy

Generate

GetTime, GetLocation

Name, Cost

Time, Location

: iterator<session>

: Session : Course
: Session
Schedule

: HTML
Template

: Session
Menu

Generator

GetCourseName, GetCost

for each session in iterator<session>

insert("Schedule",
lineltem)

484
www.EBooksWorld.ir

Course Enrollment System: Problem Description

arrows. The short arrows with circles on the end are called data tokens. They represent data elements that are
passed in the context of the message. If they point in the direction of the message, they are parameters of the mes-
sage. If they point against the direction of the message, they are values returned by the message.

The long, skinny rectangle on the SessionMenuGenerator lifeline is called an activation. An activation
represents the duration of the execution of a method or function. In this case, the message that started the method
is not shown. The other lifelines in Figure A-11 do not have activations because the methods are all very short and
do not emit other messages.

The bold rectangular box that surrounds some messages in Figure A-11 defines a loop. The completion crite-
rion of the loop is mentioned at the bottom of the box. In this case, the enclosed messages will repeat until all the
Session objects within iterator<Session> have been examined.

Note that two of the message arrows have been overloaded with more than one message. This is just a short-
hand to minimize the number of arrows. The messages are sent in the order mentioned, and the return values come
back in the same order.

Abstract Classes and Interfaces in Sequence Diagrams

The astute reader will notice that some of the objects in Figure A-11 are instantiated from interfaces.
SessionSchedule, for example, is one of the database interfaces classes. This may seem to be violating the prin-
ciple that objects cannot be instantiated from abstract classes or interfaces.

The class name of an object in a sequence diagram does not need to be the name of the actual type of the
object. It is sufficient that the object simply conform to the interface of the named class. In a static language like
C++, Java, or Eifel, the object should belong either to the class named in the sequence diagram or to a class that
derives from the class or interface in the sequence diagram. In dynamic languages like Smalltalk or Objective-C, it
is sufficient that the object conform to the interface named in the sequence diagram.9

Thus, the SessionSchedule object in Figure A-11 refers to an object whose class implements or derives
from the SessionSchedule interface.

Static Model of the Session Menu Generator. The dynamic model shown in Figure A-11 implies the
static model shown in Figure A-12. Note that the relationships are all either dependencies or stereotyped associa-
tions. This is because none of the classes shown in the figure hold instance variables that refer to the others. All the
relationships are transient in that they do not outlast the execution of the activation rectangle on the
SessionMenuGenerator lifeline of Figure A-11.

9. If you don’t understand this, don’t worry about it. In dynamic languages like Smalltalk and Objective-C, you can send any message you
like to any object you like. The compiler does not check to see whether the object can accept that message. If, at run time, a message is
sent to an object that does not recognize it, a run-time error will occur. Thus, it is possible for two completely different and unrelated
objects to accept the same messages. Such objects are said to conform to the same interface.

Figure A-12 Static Model of the Session Menu Generator application

Session Menu
Generator

Iterator
<session>

HTMLTemplate

Course Session

«instantiates» Session
Schedule
{singleton}

485
www.EBooksWorld.ir

Appendix A • UML Notation I: The CGI Example

The relationship between SessionMenuGenerator and SessionSchedule deserves special mention.
Notice that SessionSchedule is shown with the {singleton} property. This denotes that only one
SessionSchedule object can exist within the application and that it is accessible at the global scope. (See SIN-

GLETON on page 178.)
The dependency between SessionMenuGenerator and HTMLTemplate carries the stereotype «creates».

This simply indicates that the SessionMenuGenerator instantiates HTMLTemplate instances.
The associations with «parameter» stereotypes show that the objects find out about each other through

method arguments or return values.

How Does the SessionMenuGenerator Object Get Control? The activation rectangle on Session-
MenuGenerator’s lifeline in Figure A-11 does not show how it was started. Presumably, some higher level entity,
like main(), called a method on SessionMenuGenerator. We might call this method Run(). This is interesting
because we have several other CGI programs to write, and they will all need to be started by main() somehow.
Perhaps there is a base class or interface called CGIProgram that defines the Run() method, and perhaps
SessionMenuGenerator derives from it.

Getting the User’s Input into the CGI Program. The CGIProgram class will help us with another
issue. CGI programs are typically invoked by a browser after the user has filled out a form on the browser screen.
The data entered by the user are then passed to the main() function of the CGI program through standard input.
Thus, main() could pass a reference to the standard input stream to the CGIProgram object, which would in turn
make the data conveniently available to its derivatives.

What is the form of the data passed from the browser to the CGI program? It is a set of name-value pairs.
Each field in the form that was filled out by the user is given a name. Conceptually, we would like the derivatives
of CGIProgram to be able to ask for the value of a particular field by simply using its name. For example,

string course = GetValue(“course”);

Thus, main() creates the CGIProgram and primes it with the needed data by passing the standard input
stream into its constructor. The main() function then calls Run() on the CGIProgram, allowing it to begin. The
CGIProgram derivative calls GetValue(string) to access the data in the form.

But this leaves us with a dilemma. We’d like to make the main() function generic, yet it must create the
appropriate derivative of CGIProgram and there are many such derivatives. How can we avoid having multiple
main() functions?

We can solve this by using link-time polymorphism. That is, we implement main() in the implementation
file of the CGIProgram class (i.e., cgiProgram.cc). In the body of main(), we declare a global function named
CreateCGI. However, we do not implement the function. Rather, we will implement this function in the imple-
mentation file of the derivative of CGIProgram (e.g., sessionMenuGenerator.cc). (See Figure A-13.)

Authors of CGI programs no longer need to write a main() program. Rather, in each derivative of
CGIProgram, they must supply the implementation for the global function CreateCGI. This function returns the
derivative back to main(), which can then manipulate it as necessary.

Figure A-13 shows how we use components with the «function» stereotype to represent free global func-
tions. The figure also demonstrates the use of properties to show what files the functions are implemented in.
Notice that the CreateCGI function is annotated with the property {file=sessionMenuGenerator.cc}.

Summary
In this chapter, we have walked through a large portion of the UML notation in the context of a simple example.
We have shown the various notational conventions used in the different phases of software development. We
showed how a problem can be analyzed using use cases and types to form an application domain model. We

486
www.EBooksWorld.ir

Summary

showed how classes, objects, and components can be combined into static and dynamic diagrams to describe the
architecture and construction of the software. We showed the UML notation for each of these concepts and demon-
strated how the notation can be used. And, by no means of least importance, we showed how all these concepts and
notations participate in software-design reasoning.

There is more to learn about UML and software design. The next chapter will use another example to
explore more of UML and different analysis and design tradeoffs.

Bibliography

1. Booch, Grady. Object Oriented Analysis and Design with Applications, 2nd ed. Benjamin Cummings: 1994.
2. Rumbaugh, et al. Object Oriented Modeling and Design. Prentice Hall: 1991.
3. Wirfs-Brock, Rebecca, et al. Designing Object-Oriented Software. Prentice Hall: 1990.
4. Coad, Peter, and Ed Yourdon. Object Oriented Analysis. Yourdon Press: 1991.
5. Jacobson, Ivar. Object Oriented Software Engineering a Use Case Driven Approach. Addison–Wesley, 1992.
6. Cockburn, Alistair. Structuring Use Cases with Goals. http://members.aol.com/acockburn/papers/usecass.htm.
7. Kennedy, Edward. Object Practitioner’s Guide. http://www.zoo.co.uk/~z0001039/PracGuides. November 29, 1997.
8. Booch, Grady. Object Solutions. Addison–Wesley, 1995.
9. Gamma, et al. Design Patterns. Addison–Wesley, 1995.

Figure A-13 Architecture of CGI programs

Session Menu
Generator

CGIProgram

«instantiates»

«function»
main()

{file=cgiProgram.cc} + CGIProgram(data : stream)
GetValue(fieldName: string) : string
+ Run()

«function»
CreateCGI(stream)

{file=sessionMenuGenerator.cc}

487
www.EBooksWorld.ir

488
www.EBooksWorld.ir

APPENDIX B

UML Notation II:
The STATMUX

In this chapter, we continue our exploration of the UML notation, this time focussing on some of its more detail-
oriented aspects. As a context for this exploration, we will study the problem of a statistical multiplexor.

The Statistical Multiplexor Definition
A statistical multiplexor is a device that allows multiple serial data streams to be carried over a single telecommu-
nications line. Consider, for example, a device that contains a single 56K modem and has 16 serial ports. When
two such devices are connected together over a phone line, characters that are sent into port 1 on one device come
out of port 1 on the other device. Such a device can support 16 simultaneous full duplex communications sessions
over a single modem.

Figure B-1 shows a typical 1980s application for such a device. In Chicago, we have a mix of ASCII termi-
nals and printers that we want to connect to a VAX in Detroit. We have a leased 56K line that connects the two
locations. The statistical multiplexor creates 16 virtual serial channels between the two locations.

Figure B-1 Typical Statistical Multiplexor Application

4X

ASCII Printer

Statmux
Leased line from

Chicago to Detroit

Monitor

Monitor

Monitor

Statmux

16X
VAX

From Appendix B of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

489
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

Clearly, if all 16 channels are running simultaneously, they will all distribute the 56K throughput between
them, yielding an effective bit rate of somewhat less than 3500 bits per second per device. However, most termi-
nals and printers are not busy 100% of the time. Indeed, the duty cycle in many applications is well under 10%.
Thus, though the line is shared, statistically each user will perceive near 56K performance.

The problem we are going to study in this chapter is the software inside the statmux. This software controls
the modem and serial-port hardware. It also determines the multiplexing protocol used to share the communica-
tions line between all the serial ports.

The Software Environment

Figure B-2 is a block diagram1 that shows where the software fits in the statmux. It sits between the 16 serial ports
and the modem.

Each serial port generates two interrupts to the main processor—one when it is ready to send a character and
one when a character has been received. The modem also generates similar interrupts. Thus, there are 34 interrupts
coming into the system. The modem interrupts are higher priority than the serial-port interrupts. This ensures that
the modem can run at the full 56K speed even if the other serial ports must suffer periods of dormancy.

Finally, there is a timer that generates an interrupt every millisecond. This timer allows the software to
schedule events for particular times.

The Real-time Constraints

A little calculation will demonstrate the problem that this system faces. At any given time, 34 interrupts sources
may be demanding service at a rate of 5600 interrupts per second—plus an extra thousand interrupts per second
from the timer. This amounts to 191,400 interrupts per second. Thus, the software can spend no more than 5.2 µs
servicing each interrupt. This is very tight, and we will need a reasonably fast processor to make sure that we don’t
drop any characters.

To make matters worse, the system has more work to do than simply servicing the interrupts. It also has to
manage the communications protocol across the modem, gather the incoming characters from the serial ports, and
divvy out the characters that need to be sent to the serial port. All of this is going to require some processing that
must somehow fit between the interrupts.

Fortunately, the maximum sustained throughput of the system is only 11,200 characters per second (i.e., the
number of characters that can be simultaneously sent and received by the modem). This means that, on average,
we have nearly 90 µs between characters.2

1. Block diagrams are a form of Kent Beck’s GML (galactic modeling language). GML diagrams are composed of lines, rectangles, cir-
cles, ovals, and any other shape necessary to get the point across.

Figure B-2 Statmux system block diagram

2. An eternity.

Serial Port 1

Serial Port 2

Serial Port 3 Statmux Software

Timer

Serial Port 16

Modem

490
www.EBooksWorld.ir

The Statistical Multiplexor Definition

Since our ISRs (interrupt service routines) cannot exceed 5.2 µs in duration, we have at least 94% of the pro-
cessor still available to us between interrupts. This means we don’t need to be overly concerned about efficiency
outside of the ISRs.

The Input Interrupt Service Routine

These may have to be written in assembly language. The prime goal of the input ISRs is to get the character from
the hardware and store it somewhere where the non-ISR software can deal with it at its leisure. The typical way of
dealing with this is to use a ring buffer.

Figure B-3 presents a class diagram that shows the structure of the input ISRs and their ring buffers. We have
invented a few new stereotypes and properties to describe the rather unique issues involved with interrupt service
routines.

First we have the InputISR class. This class has the stereotype «ISR,» which indicates that the class is an
interrupt service routine. Such classes are written in assembly language and have only one method. This method
has no name and is invoked only when the interrupt occurs.

InputISR has an association to its particular RingBuffer. The «struct» stereotype on the RingBuffer
class indicates that this is a class with no methods. It is nothing more than a data structure. We have done this
because we expect it to be accessed by assembly language functions that would not otherwise have access to the
methods of a class.

The Put(RingBuffer*, char) function is shown in a class icon with the stereotype of «reentrant». This
stereotype, used in this way, represents a free function that is written to be safe from interrupts.3 This function adds
characters to the ring buffer. It is called by InputISR when a character has been received.

The properties on the function indicate that it has a real-time deadline of 2 µs, that it should be written in
assembly language, and that it should be coded inline wherever it is invoked. These last two properties are an
attempt to meet the first.

The ISRRingBuffer class is a regular class whose methods run outside of interrupt service routines. It
makes use of the RingBuffer struct and provides a class facade for it. Its methods all conform to the «reentrant»
stereotype and are therefore interrupt safe.

The ISRRingBuffer class realizes the Ring interface. This interface allows the clients outside the interrupt
service routines to access the characters stored in the ring buffers. This class represents the interface boundary
between the interrupts and the rest of the system.

Figure B-3 The Input Service Interrupt Routine

3. Reentrancy is a complex topic that is beyond the scope of this chapter. The reader is referred to good texts on real-time and concurrent
programming such as Doug Lea’s Concurrent Programming in Java, Addison–Wesley, 1997.

Input ISR
«ISR» Ring

«interface»

+ Get() : char
+ Put(char)

ISRRingBuffer

«reentrant»
+ Get() : char
+ Put(char)

Ring Buffer
«struct»

Put(RingBuffer*,char)

«reentrant»

{deadline=2µs, assembly,
inline}

first : char*
last : char*
count : int
buf : char[N]

491
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

Ring Buffer Behavior. The ring buffers can be described by a “simple” state machine as shown in Figure
B-4. The state machine shows what happens when the Get() and Put() methods are called on objects of the
ISRRingBuffer class.

The diagram shows the three states that a ring buffer can be in. The machine begins in the Empty state. In the
Empty state, the ring buffer has no characters in it. In that state, the Get() method will cause an underflow. We
have not here defined what happens during underflow or overflow—those decisions are left for later. The two states

Stereotypes in List Boxes
When stereotypes appear in the list compartments of classes, they have a special meaning. Those ele-
ments that appear below the stereotype conform to that stereotype.

In this example, function f1() has no explicit stereotype. Functions f2() and f3(), however, conform to
the «mystereotype» stereotype.

There is no limit on the number of stereotypes that can appear in a list box like this. Each new stereo-
type overrides the previous. All elements shown between two stereotypes conform to the stereotype
above them.

An empty stereotype «» can be used in the midst of a list to show that the following elements have no
explicit stereotype.

Figure B-4 Ring Buffer State Diagram

AClass

+ f1()
«mystereotype»
+ f2()
+ f3()

Empty

Get()/Underflow

Partial

Full

Put(c)/Overflow

[count == 0]

[count == N]
Get() /

count- -:
int f = first;
first = (first+1)%N;
return buf[f];

Put(c)/
buf[last] = c;
last = (last+1)%N
count++;

Gettable

Puttable

492
www.EBooksWorld.ir

The Statistical Multiplexor Definition

Empty and Partial are substates of the Puttable superstate. The Puttable superstate represents those states
in which the Put() method operates without overflowing. Whenever the Put() method is invoked from one of the
Puttable states, the incoming character is stored in the buffer, and the counts and indexes are adjusted appropri-
ately. The Partial and Full states are both substates of the Gettable superstate. The Gettable superstate rep-
resents those states in which the Get() function operates without underflowing. When Get() is called in those
states, the next character is removed from the ring, and is returned to the caller. The counts and indexes are
adjusted appropriately. In the Full state, the Put() function results in an Overflow.

The two transitions out of the Partial state are governed by guard conditions. The machine transitions
from the Partial to the Empty state whenever the count variable goes to zero. Likewise, the machine transitions
from the Partial state to the Full state whenever the count variable reaches the size of the buffer (N).

States and Internal Transitions
In UML, a state is represented by a rectangle with rounded corners. This rectangle may have two com-
partments.

The top compartment simply names the state. If no name is specified, then the state is anonymous. All
anonymous states are distinct from one another.

The bottom compartment lists the internal transitions for the state. Internal transitions are denoted as
eventName/action. The eventName must be the name of an event that can occur while the machine
is in the given state. The machine responds to this event by remaining in the state and executing the
specified action.

There are two special events that can be used in internal transitions. They are depicted in the icon
above. The entry event occurs when the state is entered. The exit event occurs when the state is
exited (even for a transition that returns immediately to that state).

An action may be the name of another finite-state machine that has both an initial and final state. Or an
action can be a procedural expression written in some computer language or pseudocode. The proce-
dure may use operations and variables of the object, if any, that contain the state machine. Or, the
action can be of the form ^object.message(arg1, arg2, ...), in which case the action causes
the named message to be sent to the named object.

There are two special pseudostate icons shown in the previous diagram. On the left, we see the black
circle that represents the initial pseudostate. On the right, we see the bull’s-eye that represents the final
pseudostate. When a finite-state machine is initially invoked, it makes a transition from the initial
pseudostate to the state to which it is connected. Thus, the initial pseudostate may only have one tran-
sition leaving it. When an event causes a transition to the final pseudostate, the state machine shuts
down and accepts no more events.

initial final

entry/myEntryFunction
exit /myExitFunction
myEvent/myAction

State

493
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

Transitions between States
A finite-state machine is a network of states connected by transitions. Transitions are arrows that con-
nect one state to another. The transition is labeled with the name of the event that triggers it.

Here we see two states connected by a single transition. The transition will be ‘fired’ if the machine is
in state1 and the event occurs. Upon the ‘firing’ of the transition, state1 is exited, and any exit
action is executed. Then the action on the transition is executed. Then state2 is entered, and its
entry action is executed.

An event on a transition can be qualified with a guard condition. The transition will only fire if the
event occurs and the guard condition is true. Guard conditions are boolean expressions that appear in
square brackets after the event name (e.g., myEvent[myGuardCondition]).

Actions on transitions are exactly the same as actions on internal transitions within states. (See “States
and Internal Transitions.”)

Nested States
When one state icon completely encloses one or more others, the enclosed states are said to be sub-
states of the enclosing superstate.

In the diagram above, states B and C are substates of the superstate S. The state machine begins in
state A, as shown by the initial pseudostate. If transition V fires, then substate C within superstate S
will become active. This will cause the entry functions of both S and C to be invoked.

If transition Y fires while in state A, the machine enters superstate S. A transition into a superstate must
result in one of its substates becoming active. If a transition terminates at the edge of a superstate, as
transition Y does, then there is a transition from the initial pseudostate within the superstate. Thus,
transition Y triggers the transition from the S-Initial pseudostate to substate C.

(continues on next page)

state1 state2
event/action

A

D

B

C

Y

T

Z

V

R

S

Q

H W X

S-Initial

494
www.EBooksWorld.ir

The Statistical Multiplexor Definition

The Output Service Interrupt Routine

The processing for output interrupts is very similar to the processing for input interrupts. However, there are some
differences. The noninterrupt parts of the system load up the output ring buffer with characters to be sent. The
serial port generates an interrupt whenever it is ready for the next character. The interrupt service routine grabs the
next character from the ring buffer and sends it to the serial port.

If there are no characters waiting in the ring buffer when the serial port becomes ready, then the interrupt ser-
vice routine has nothing to do. The serial port has already signalled its readiness to accept a new character, and it
will not do so again until it is given a character to send and finishes sending it. Thus, the flow of interrupts stops.
We therefore need a strategy for restarting the output interrupts when new characters arrive. Figure B-5 shows the
structure of the output ISR. Its similarity to the input ISR in Figure B-3 is obvious. However, notice the «calls»
dependency from the ISRRingBuffer to the OutputISR. This indicates that the ISRRingBuffer object can
cause the OutpuISR to execute just as though an interrupt had been received.

Figure B-6 shows the necessary modifications to the finite-state machine of the output ring buffers. Compare
this with Figure B4. Notice that the Puttable superstate has been removed and that there are two Put transitions.
The first Put transition goes from the Empty state to the Partial state. This will cause the entry action of the
Gettable superstate to be executed, which generates an artificial interrupt to the OutputISR.4 The second Put
transition is internal to the Partial state.

When transition Y is fired, superstate S and substate C are both entered. Any entry actions for S and C
are invoked at that time. The superstate’s entry actions are invoked before the substate’s entry actions.
Transitions W and X may now fire, moving the machine between the B and C substates. The exit and
entry actions will be performed as usual, but since superstate S is not exited, its exit functions will not
be invoked.

Eventually, transition Z will fire. Notice that Z leaves the edge of the superstate. This means that,
regardless of whether substate B or C is active, transition Z moves the machine to state D. This is
equivalent to two separate transitions, one from C to D and the other from B to D, both labelled Z.
When Z fires, the appropriate substate exit action is performed, and then the exit action for superstate
S is performed. Then D is entered, and its entry action is performed.

Notice that transition Q terminates on a final pseudostate. If transition Q fires, then superstate S termi-
nates. This will cause the unlabeled transition from S to A to fire. Terminating the superstate also
resets any history information, as described later.

Transition T terminates on a special icon within the S superstate. This is called the history marker.
When transition T fires, the substate that was last active within S becomes active again. Thus, if transi-
tion Z had occurred while C was active, then transition T will cause C to become active again.

If transition T fires when the history marker is inactive, then the unlabeled transition from the his-
tory marker to substate B fires. This denotes a default when there is no history information avail-
able. The history marker is inactive if S has never been entered or just after S has been terminated
by transition Q.

Thus the event sequence Y-Z-T will leave the machine in substate C. But both R-T and Y-W-Q-R-T
will leave the machine in substate B.

4. The mechanism for generating an artificial interrupt of this kind is strongly dependent on the platform. On some machines, it is possible
to simply call the ISR as though it were a function. Other machines require more elaborate protocols for artificially invoking ISRs.

495
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

The Communications Protocol

Two statmuxes communicate via their modems. Each sends packets to the other over a telecommunications line. We
must assume that the line is imperfect and that errors and dropouts can occur. Characters can be lost or garbled during
transmission, and spurious characters may be created by electrical discharges or other electromagnetic interference.
Therefore, a communications protocol must be put in place between the two modems. This protocol must be able to
verify that packets are complete and accurate, and it must be able to retransmit packets that were garbled or lost.

Figure B-7 is an activity diagram. (See the “Activity Diagrams” sidebar on page 498.) It shows the commu-
nications protocol that our statmuxes will be using. This protocol is a relatively straightforward sliding window
protocol with pipelining and piggybacking.5

The protocol begins at the initial pseudostate by initializing some variables and then creating three indepen-
dent threads. The variables will be explained later, in the sections regarding the threads that depend on them. The
“timing thread” is used to retransmit packets if no acknowledgment has been received within the allowed time
period. It is also used to make sure that acknowledgments of properly received packets are sent in a timely fashion.
The “sending thread” is used to send packets that have been queued for transmission. The “receiving thread” is
used to receive, validate, and process packets. Let’s examine each in turn.

Figure B-5 Output Interrupt Service Routine

Figure B-6 Output Service Interrupt State machine

5. See Computer Networks, 2d. ed. Tanenbaum, Prentice Hall, 1988, Sec. 4.4 for more information about this kind of communications
protocol.

+ Get() : char
+ Put(char)

Ring
«interface»

+ Get() : char
+ Put(char)

ISRRingBuffer

«reentrant»

«ISR»

«reentrant»

first : char*
last : char*
count : int
buf : char[N]

Ring Buffer

Get(RingBuffer*) : char

«struct»

Output ISR

{deadline=2µs,assembly,
inline}

«calls»

Full

Empty

Put(c)/
buf[last]=c;
last = (last+1)%N
count++;

Put(c)/
buf[last]=c;
last = (last+1)%N
count++;

Get()/Underflow

[count == 0]

[count == N]

entry/OutputISR^interrupt

Partial Get()/
count- -;
int f = first;
first = (first+1)%N;
return buf[f];

Put(c)/Overflow

Gettable

496
www.EBooksWorld.ir

The Statistical Multiplexor Definition

The Sending Thread. The S variable contains the serial number that will be stamped on the next outgo-
ing packet. Each packet is numbered with a serial number in the range 0..N. The sending thread will continue to
send packets, without waiting for them to be acknowledged, until there are W outstanding unacknowledged pack-
ets. W is set to N/2 so that never more than half the serial numbers are in play at any given time. The SendLimit
variable normally holds the serial number of the packet that is beyond the window (W), and so it is the smallest
serial number that cannot yet be sent.

As the sending thread continues to send packets, it increments S modulo N. When S reaches the
SendingLimit, the thread blocks until SendingLimit is changed by the receiving thread. If S has not yet
reached the SendingLimit, then a new packet is pulled down from the queue by the ReadQueue() function. The
packet is placed in the S position of the P array. We keep the packet in this array in case it needs retransmission.
Then the packet is sent along with its serial number (S) and with the piggybacked acknowledgment (A). A is the
serial number of the last packet that we received. This variable is updated by the receiving thread.

Having sent the packet, we start a time-out for it. If this time-out occurs before the packet is acknowledged, the
timing thread will assume that either the packet or the acknowledgment was lost, and it will retransmit the packet.

At this point, we also reset the Ack timer. When the Ack timer expires, the timer thread assumes that too
much time has elapsed since the last time we sent an acknowledgment, so it acknowledges the last-known good
packet to be received.

Figure B-7 Communications Protocol Activity Diagram

W = N/2
SendLimit = W - 1

S = 0
RCVD[0..W-1] = false
RCVD[W..N-1] = true

A = N - 1
E = 0

S == SendLimit?

P[S] = ReadQueue()
Send(P[S],S,A)

Set Timeout for S
Reset Ack Time

S=(S+1)%N

Yes

No

Sending Thread

Timer Thread

Wait for Timer
Event

AckTimeTimeout(K)

Send(P[K],K,A)
Set Timeout for K SendAck(A)

Receiving thread

Wait for Frame

Frame

SendLimit = (Frame.Ack+W)%N
Kill Timeout for Frame.Ack

Frame.Packet
== nil?

Yes

Yes

Yes

No

No

No

PS = frame.number

RCVD[PS] = true
R[PS]=Frame.Packet

RCVD[(E+W)%N]=false
A=E

E = (E+1)%N
Process(R[E])

RCVD[E] == true?

RCVD[PS] == true?

497
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

The Receiving Thread. This thread begins by initializing a few variables. RCVD is an array of boolean
flags indexed by serial number. As packets are received, they are marked in RCVD as true. Once a packet is pro-
cessed, the serial number that is W past that packet is marked false. E is the serial number of the packet we are
expecting and is next to be processed; it will always be A+1 modulo N. As part of initialization, we set the last half
of RCVD to true to denote the fact that those serial numbers are outside the allowed window. If they were to be
received, they would be dropped as duplicate packets.

The receiving thread waits for a frame. A frame may be a packet or just a plain acknowledgment. In either
case, it will contain the acknowledgment of the last good packet. We update the SendingLimit and trigger the
sending thread. Notice that the SendingLimit is set to W past the last acknowledged frame. Thus, the sender is
allowed to use only half the serial number space starting at the last acknowledged packet, so that the sender and
receiver have negotiated which half of the serial number space is currently valid.

If the frame contains a packet, then we get the serial number of that packet and check the RCVD array to see
if we have already received a packet with this serial number. If so, we drop it as a duplicate. Otherwise, we update
the RCVD array to show that the packet has now been received, and we save the packet in the R array.

Although the packets are sent in serial number order, they can be received out of order. This is true simply
because packets can get lost and retransmitted. Thus, even though we have just received packet number PS, it may
not be the one we were expecting (E). If it is not, we simply wait until E is received. However, if PS == E, then we
spawn off a separate thread to process the packet. We also move the allowed serial number window by setting the
E+W slot of the RCVD array to false. Finally, we set A to E to signify that E was the last good received serial number,
and we increment E.

The Timing Thread. The timer simply waits for a timer event. There are two kinds of events that can
occur. A Timeout(K) event signifies that a packet was sent by the sending thread, but no acknowledgment was
ever received. Thus, the timer thread retransmits the K packet and restarts its timer.

The AckTime event is generated by a repeating, retriggerable timer. This timer sends the AckTime event
every X milliseconds. However, it can be retriggered to start over at X. The sending thread retriggers this timer
every time it sends a packet. This is appropriate because each packet carries a piggyback acknowledgment. If no
packet has been sent for X milliseconds, then the AckTime event will occur, and the timer thread will send an
acknowledgment frame.

Whew! You may have found this discussion to be a bit of a struggle to get through. Just imagine what it
would have been like without the explanatory text. The diagram may express my intent, but the extra words sure
help. Diagrams can seldom stand on their own.

How do we know that the diagram is correct? We don’t! It won’t surprise me in the slightest if several read-
ers find problem with it. Diagrams can’t usually be tested directly the way code can. So we’ll have to wait for the
code to know if this algorithm is really correct.

These two issues make the utility of such diagrams questionable. They can make good pedagogical tools, but
one should not be considered expressive and accurate enough to be the sole specification of a design. Text, code,
and tests are also required.

Activity Diagrams
Activity diagrams are a hybrid of state transition diagrams, flowcharts, and petri nets. They are espe-
cially good at describing event-driven multithreaded algorithms.

An activity diagram is a state diagram. It is still a graph of states connected by transitions. However, in
an activity diagram, there are special kinds of states and transitions.

(continues on next page)

498
www.EBooksWorld.ir

The Statistical Multiplexor Definition

Action State

An action state is drawn as a rectangle with a flat top and bottom and rounded sides. This icon is dis-
tinct from a normal state icon in that the corners are sharp, whereas a state icon has rounded corners.
(See “States and Internal Transitions” on page 493.) The inside of the action state contains one or more
procedural statements that represent its entry actions. (This is just like a process box in a flowchart)

When an action state is entered, its entry actions are executed immediately. Once those actions are
completed, the action state is exited. The outgoing transition must not have an event label, since the
“event” is simply the completion of the entry actions. However, there may be several outgoing transi-
tions, each with a mutually exclusive guard condition. The union of all the guard conditions must
always be true (i.e., it is impossible to get “stuck” in an action state).

Decisions

The fact that an action state can have many outgoing guarded transitions means that it can act as a
decision step. However, it is often better to specifically denote decisions, for which the diamond icon
is traditional.

A transition enters a diamond, and N guarded transitions leave it. Once again, the boolean union of all
the outgoing guards must yield truth.

In Figure B-7, we used a variation of the diamond that is more akin to flowcharts. A boolean condition
is stated within the diamond, and two outgoing transitions are labeled “Yes” and “No.”

Complex Transitions

Complex transitions show the splitting and joining of multiple threads of control. They are denoted by
the dark bar called an asynchronization bar. Arrows connect states to the asynchronization bar. The
states that lead to the bar are called source states, and the states leading away from the bar are called
destination states.

(continues on next page)

procedural
statements

[B] [A]

Condition
No Yes

Source State

Destination State Destination State

Source State Source State

499
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

Structure of the Communications Protocol Software. The three threads of control all share the same
variables. Thus, the functions invoked by those threads should probably be methods of the same class. However,
most threading systems nowadays equate a thread with an object. That is, each thread has an object that controls it.
In UML, these are called active objects. (See “Active Objects” on page 502.) So the class that houses the protocol
methods will also need to create the active objects that control the threads.

The timer thread will be useful in places other than the protocol, so its thread should probably be created in
a different part of the system. This leaves the sending thread and the receiving thread to be created by the
protocol object.

Figure B-8 shows an object diagram (see “Object Diagrams” on page 501) that depicts the situation just after
the CommunicationsProtocol object has been initialized. The CommunicationsProtocol has created two
Thread objects and keeps responsibility for their lifetimes. The Thread objects employ the COMMAND6 pattern in
order for the newly created thread of execution to get started. Each Thread holds an instance of an object that con-
forms to the Runnable interface. (See “Interface Lollipops” on page 502.) The ADAPTER7 pattern is then used to
bind the Threads to the appropriate methods of the CommunicationsProtocol object.

A similar arrangement can be seen between the Timer and the CommunicationsProtocol. However, in
this case the lifetime of the Timer object is not controlled by the CommunicationsProtocol object.

The «friend» relationships exist because we want the methods invoked by the adapters to be private to
CommunicationsProtocol. We don’t want them to be called by anyone other than the adapters.8

The entire group of arrows leading to and from the bar form, a single transition. The arrows are
labeled neither with events nor with guards. The transition fires when all the source states are occupied
(i.e., when the three independent threads are in the appropriate states). Moreover, the source states
must be true states and not action states (i.e., they must be able to wait).

Upon firing, the source states are all exited, and the destination states are all entered. If there are more
destination states than source states, then we have spawned new threads of control. If there are more
source states, then some threads have joined.

Each time a source state is entered, the entry is counted. Each time the complex transition fires, the
counters in its source states are decremented. A source state is considered to be occupied as long as the
counter is nonzero.

As a notational convenience, a true transition or an action state can be used as a source for an asyn-
chronization bar. (See Figure B-7.) In such a case, it is assumed that the transition actually terminates
on a true unnamed state, which is a source state of the bar.

6. page 151

7. page 317

8. There are several other ways to accomplish this. We could use inner classes in Java.

action action action action

state state

500
www.EBooksWorld.ir

The Statistical Multiplexor Definition

Figure B-8 Object Diagram: Just after protocol object has been initialized

Object Diagrams
Object diagrams depict the static relationships that exist between a set of objects at a particular
instance in time. They differ from class diagrams in two ways. First, they depict objects instead of
classes and the links between objects rather than the relationships between classes. Second, class dia-
grams show source code relationships and dependencies, whereas object diagrams show only those
run-time relationships and dependencies that exist for the instant defined by the object diagram. Thus,
the object diagram shows the objects and links that exist when the system is in a particular state.

(continues on next page)

Runnable : SenderRunAdapter

+ Run()

+ SetRunnable(r)

«friend»

«friend»
«friend»

«friend»

itsSendingThread

itsReceivingThread

: Thread

+ SetRunnable(r)

: Thread

: ReceiverRunAdapter

+ Run()

+ Run()

Runnable

Runnable

Runnable

: Timer

: TimeoutAdapter

+ Run()

: AckTimeAdapter

: Communications Protocol

- W : int
- SendLimit : int
- S : int
- RCVD : int[N]
- A : int
- E : int
- P : PacketPtr[N]
- R : PacketPtr[N]

+ Initialize()
- RunSendingThread()
- RunReceivingThread()
- Timeout(K)
- AckTime()
- MoveSendWindow(ssn:int)

A

B C

D

E
theC : C

theD : D

Class Diagram Object Diagram

0..1

501
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

In the previous diagram, we see a class diagram and an object diagram that represent one possible state
of the objects and links that derive from the classes and relationships in the class diagram. Notice that
the objects are drawn in the same manner as they are in a sequence diagram. They are rectangles with
underlined, two-component names. Notice also that the relationship on the object diagram is drawn the
same way as on the class diagram.

A relationship between two objects is called a link. A link allows messages to flow in the direction of
navigability. In this case, messages can flow from theC to theD. This link exists because there is a
composition relationship between class A and class D, and because class C derives from class A. Thus,
an instance of class C can have links that are derived from its base classes.

Notice also that the relationship between class A and class E is not represented on the object diagram.
This is because the object diagram depicts a particular state of the system during which C objects are
not associated with E objects.

Active Objects
Active objects are objects that are responsible for a single thread of execution. The thread of execution
does not need to be running inside the methods of the active object. Indeed, the active object typically
calls out to other objects. The active object is simply the object in which the thread of execution origi-
nates. It is also the object that provides thread management interfaces such as Terminate and
Suspend, and ChangePriority.

Active objects are drawn as ordinary objects, but with a bold outline. If the active object also owns
other objects that execute within its thread of control, you can draw those objects inside the boundaries
of the active object.

Interface Lollipops
Interfaces can be shown as classes with the «interface» stereotype, or they may be shown with a spe-
cial lollipop icon.

(continues on next page)

myActiveObject

Server

Server

ServerImp ServerImp

Client Client

Stereotype notation Lollipop notation

«interface»

502
www.EBooksWorld.ir

The Statistical Multiplexor Definition

The Initialization Process. The individual processing steps used to initialize the Communications-
Protocol object are shown in Figure B-9. This is a collaboration diagram. (See “Collaboration Diagram” on page 504.

The initialization process begins at message number 1. The CommunicationsProtocol receives
the Initialize message from some unknown source. It responds in messages 1.1 and 1.2 by creating the
SendingThread object and its associated SenderRunAdapter. Then, in messages 1.3 and 1.4, it binds
the adapter to the thread and starts the thread.

Notice that message 1.4 is asynchronous, so the initialization process continues with messages 1.5 through
1.8, which simply repeat the procedure for the creation of the ReceivingThread. Meanwhile, a separate thread
of execution begins in message 1.4.1a, which invokes the Run method in the SenderRunAdapter. As a result, the
adapter sends message 1.4.1.1a:RunSendingThread to the CommunicationsProtocol object. This starts the
processing of the sending thread. A similar chain of events starts the receiving thread. Finally, messages 1.9
through 1.12 create the timer adapters and register them with the timer.

Both of the diagrams in this box have exactly the same interpretation. Instances of class Client make
use of the Server interface. The ServerImp class implements the Server interface.

Either of the two relationships connected to the lollipop can be omitted, as shown in the following
diagram:

Figure B-9 Collaboration Diagram: Initializing the CommunicationsProtocol object

Client ServerImp

Server

Server

: Communications
Protocol

SendingThread:
Thread

sra : SenderRun
Adapter

ReceivingThread
: Thread

rra : Receiver
RunAdaptertoa : TimeOut

Adapter
ata : AckTime

Adapter

: Timer

1.3:SetRunnable(sra)

1.4.1.1a:RunSendingThread()

1.8.1.1b:RunReceivingThread()

1.8.1b:Run

1.4.1a:Run1.4 Start()

1.8:Start()

1.7:SetRunnable(rra)

1.2:Create

1.6:Create

1.1:Create

1.5:Create

1.11:Register(toa)

1:Initialize()

1.12:Register(ata)

1.9:Create

1.10:Create

503
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

Collaboration Diagrams
Collaboration diagrams are similar to object diagrams except that they show how the state of the sys-
tem evolves over time. The messages that are sent between the objects are shown, along with their
arguments and return values. Each message is labeled with a sequence number to show the order in
relation to the other messages.

Messages are drawn as small arrows placed near the link between two objects. The arrow points at the
object that is receiving the message. The message is labeled with the name and sequence number of
the message.

The sequence number is separated from the name of the message by a colon. The message name is fol-
lowed by parentheses that contain a comma-separated list of the arguments to the message. The
sequence number is a dot-separated list of numbers, followed by an optional thread identifier.

The numbers in the sequence number denote both the order of the message and its depth in the calling
hierarchy. Message number 1 is the first message to be sent. If the procedure invoked by message 1
invokes two other messages, they will be numbered 1.1 and 1.2, respectively. Once they return and
message number 1 completes, the next message will be number 2. By using this scheme of dots, it is
possible to completely describe the order and nesting of the messages.

The thread identifier is the name of the thread that the message is executing within. If the thread iden-
tifier is omitted, it indicates that the message is executing in the unnamed thread. If message number
1.2 spawns a new thread named “t,” the first message of that new thread will be numbered 1.2.1t.

Return values and arguments can be shown by using the data token symbol (the little arrow with the
circle on the end). Alternately, return values can be shown using assignment syntax in the message
name as follows:

1.2.3 : c:=message(a,b)

In this case, the return value of “message” will be held in a variable named “c.”

A message that uses a filled arrowhead, as shown to the left, represents a synchronous func-
tion call. It does not return until all other synchronous messages invoked from its procedure

are returned. This is the normal kind of message for C++, Smalltalk, Eiffel, or Java, etc.

The stick arrowhead shown to the left represents an asychronous message. Such a message
spawns a new thread of control to execute the invoked method and then returns immediately.

Thus, the message returns before the method is executed. Messages that are sent by the method should
have a thread identifier, since they are executing in a thread that differs from the invocation.

: A : B

return

1.2.3a:message(arg)

504
www.EBooksWorld.ir

The Statistical Multiplexor Definition

Race Conditions within the Protocol. The protocol, as described in Figure B-7, has a number of inter-
esting race conditions. A race condition occurs when the order of two separate events cannot be predicted, yet the
state of the system is sensitive to that order. The state of the system then depends on which event wins the race.

The programmer attempts to make sure that the system behaves properly regardless of the ordering of the
events. However, race conditions are hard to identify. Undiscovered race conditions can lead to transient and
difficult-to-diagnose errors.

As an example of a race condition, consider what happens when a packet is sent by the sending thread. (See
Figure B-10.) This kind of diagram is called a message sequence chart. (See “Message Sequence Charts” on
page 506.) The local sender sends packet S and starts a time-out. The remote receiver receives this packet and lets
the remote sender know that S was received OK. The remote sender either sends an explicit ACK or piggybacks an
ACK onto the next packet. The local receiver gets this ACK and kills the time-out.

Sometimes the ACK doesn’t make it back. In that case the time-out expires, and the packet is retransmitted.
Figure B-11 shows what happens.

A race condition exists between these two extremes. It is possible that the timer will expire just as the ACK
is being sent. Figure B-12 shows the scenario. Note the crossed lines. They represent the race. Packet S has been
sent and received just fine. Moreover, an ACK was transmitted back. However, the ACK arrived after the time-out
had occurred. Thus, the packet gets retransmitted even though the ACK was received.

The logic of Figure B-7 handles this race properly. The remote receiver will realize that the second arrival of
packet S is a duplicate and will discard it.

Figure B-10 Acknowledgment of a packet: Normal

Figure B-11 Acknowledgment lost: Retransmission

Set Timeout for S Packet(S)

AcK(S)

: Timer localSender localReceiver remoteSender remoteReceiver

Kill Timeout for S

Set Timeout for S Packet(S)

Packet(S)

: Timer localSender localReceiver remoteSender remoteReceiver

Timeout
Too much

time.

505
www.EBooksWorld.ir

Appendix B • UML Notation II: The STATMUX

Conclusion
In this chapter, we have presented most of the dynamic modeling techniques of UML. We have seen state
machines, activity diagrams, collaboration diagrams, and message sequence charts. We have also seen how these
diagrams handle problems of single and multiple threads of control.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison–Wesley, 1995.

Figure B-12 ACK / Retransmission race condition

Message Sequence Charts
Message sequence charts are a special form of sequence diagrams. The primary difference is that the
message arrows are angled downward to show that time can elapse between the sending and the
receiving of a message. All the other parts of the sequence diagram may be present, including activa-
tions and sequence numbers.

The primary use of message sequence charts is to discover and document race conditions. These charts
are very good at showing the relative timings of certain events and how two independent processes can
have a different view of the order of events.

Consider Figure B-12. The Timer object thinks that the Timeout event occurs before the Kill
Timeout event. However, the localSender perceives those two events in the opposite order.

This difference in the perception of the order of events can lead to logic flaws that are extremely sensi-
tive to timing and very hard to reproduce and diagnose. Message sequence charts are a very nice tool
for finding these situations before they wreak havoc in the field.

Set Timeout for S

Kill Timeout for S

Packet(S)

ACK(S)
Packet(S)

: Timer localSender localReceiver remoteSender remoteReceiver

Timeout
Too much

time.

506
www.EBooksWorld.ir

APPENDIX C

A Satire of Two Companies

“I’ve got a good mind to join a club and beat you over the head with it!”

—Rufus T. Firefly

Rufus, Inc.
Project Kickoff

Your name is Bob. The date is January 3, 2001, and
your head still aches from the recent millennial revelry.
You are sitting in a conference room with several manag-
ers and a group of your peers. You are a project team
leader. Your boss is there, and he has brought along all of
his team leaders. His boss called the meeting.

“We have a new project to develop,” says your
boss’s boss. Call him BB. The points in his hair are so
long that they scrape the ceiling. Your boss’s points are
just starting to grow, but he eagerly awaits the day when
he can leave Brylcream stains on the acoustic tiles. BB
describes the essence of the new market they have identi-
fied and the product they want to develop to exploit this
market.

“We must have this new project up and working by
fourth quarter, October 1,” BB demands. “Nothing is of
higher priority; so we are cancelling your current project.”

The reaction in the room is stunned silence.
Months of work are simply going to be thrown away.
Slowly, a murmur of objection begins to circulate around
the conference table.

His points give off an evil green glow as BB meets
the eyes of everyone in the room. One by one that insidi-
ous stare reduces each attendee to quivering lumps of
protoplasm. It is clear that he will brook no discussion on
this matter.

 Once silence has been restored, BB says, “We
need to begin immediately. How long will it take you to
do the analysis?”

Rupert Industries
Project: ~Alpha~

Your name is Robert. The date is January 3,
2001. The quiet hours spent with your family this
holiday have left you refreshed and ready for work.
You are sitting in a conference room with your
team of professionals. The manager of the division
called the meeting.

“We have some ideas for a new project,”
says the division manager. Call him Russ. He is a
high-strung British chap with more energy than a
fusion reactor. He is ambitious and driven, but he
understands the value of a team.

Russ describes the essence of the new market
opportunity the company has identified and intro-
duces you to Jay, the marketing manager who is
responsible for defining the products that will
address it.

Addressing you, Jay says, “We’d like to start
defining our first product offering as soon as possi-
ble. When can you and your team meet with me?”

You reply, “We’ll be done with the current
iteration of our project this Friday. We can spare a
few hours for you between now and then. After
that, we’ll take a few people from the team and
dedicate them to you. We’ll begin hiring their
replacements and the new people for your team
immediately.”

“Great,” says Russ, “But I want you to
understand that it is critical that we have some-
thing to exhibit at the trade show coming up this

From Appendix C of Agile Software Development, Principles, Patterns, and Practices, First Edition. Robert C. Martin.
Copyright © 2003 by Pearson Education, Inc. All rights reserved.

507
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

You raise your hand. Your boss tries to stop you,
but his spitwad misses you and you are unaware of his
efforts.

“Sir, we can't tell you how long the analysis will
take until we have some requirements.”

“The requirements document won't be ready for
three or four weeks,” BB says, his points vibrating with
frustration. “So, pretend that you have the requirements
in front of you now. How long will you require for
analysis?”

No one breathes. Everyone looks around at every-
body else to see if they have some idea.

“If analysis takes any longer than April 1, then we
have a problem. Can you finish the analysis by then?”

Your boss visibly gathers his courage, building to
the ejaculation, “We'll find a way, Sir!” His points grow 3
mm, and your headache increases by two Tylenols.

“Good.” BB smiles. “Now, how long will it take to
do the design?”

“Sir,” you say. Your boss visibly pales. He is
clearly worried that his 3 millimeters are at risk. “With-
out an analysis, it will not be possible to tell you how
long design will take.”

BB's expression shifts beyond austere. “PRE-
TEND you have the analysis already!” he says, while fix-
ing you with his vacant beady little eyes. “How long will
it take you to do the design?”

Two Tylenols are not going to cut it. Your boss, in a
desperate attempt to save his new growth, babbles,
“Well, sir, with only six months left to complete the
project, design had better take no longer than three
months.”

“I'm glad you agree, Smithers!” BB says, beaming.
Your boss relaxes. He knows his points are secure. After
a while, he starts lightly humming the Brylcream jingle.

BB continues, “So, analysis will be complete by
April 1, design will be complete by July 1, and that gives
you three months to implement the project. This meeting
is an example of how well our new consensus and
empowerment policies are working. Now, get out there
and start working. I'll expect to see TQM plans and QIT
assignments on my desk by next week. Oh, and don't for-
get that your cross-functional team meetings and reports
will be needed for next month’s quality audit.”

“Forget the Tylenol,” you think to yourself as you
return to your cubicle. “I need bourbon.”

July. If we can’t be there with something signifi-
cant, we’ll lose the opportunity.”

“I understand,” you reply. “I don’t yet know
what it is that you have in mind, but I’m sure we
can have something by July. I just can’t tell you
what that something will be right now. In any case,
you and Jay are going to have complete control
over what we developers do, so you can rest
assured that by July you’ll have the most important
things that can be accomplished in that time ready
to exhibit.”

Russ nods in satisfaction. He knows how this
works. Your team has always kept him advised and
allowed him to steer their development. He has the
utmost confidence that your team will work on the
most important things first and that they will pro-
duce a high-quality product.

~ ~ ~
“So Robert,” says Jay at the first meeting,

“How does your team feel about being split up?”
“We’ll miss working with each other,” you

answer, “but some of us were getting pretty tired of
that last project and are looking forward to a
change. So, what are you guys cooking up?”

Jay beams. “You know how much trouble our
customers currently have...” And he spends a half
hour or so describing the problem and possible
solution.

“OK, wait a second” you respond. “I need to
be clear about this.” And so you and Jay talk about
how this system might work. Some of Jay’s ideas
aren’t fully formed. You suggest possible solutions.
He likes some of them. You continue discussing.

During the discussion, as each new topic is
addressed, Jay writes user-story cards. Each card
represents something that the new system has to
do. The cards accumulate on the table and are
spread out in front of you. Both you and Jay point
at them, pick them up, and make notes on them as
you discuss the stories. The cards are powerful
mnemonic devices that you can use to represent
complex ideas that are barely formed.

At the end of the meeting you say, “OK, I’ve
got a general idea of what you want. I’m going to
talk to the team about it. I imagine there are some
experiments they’ll want to run with various data-

508
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

Visibly excited, your boss comes over to you and
says, “Gosh, what a great meeting. I think we're really
going to do some world shaking with this project.” You
nod in agreement, too disgusted to do anything else.

“Oh,” your boss continues, “I almost forgot.” He
hands you a 30-page document. “Remember that the SEI
are coming to do an evaluation next week. This is the
evaluation guide. You need to read through it, memorize
it, and then shred it. It tells you how to answer any ques-
tions that the SEI auditors ask you. It also tells you what
parts of the building you are allowed to take them to and
what parts to avoid. We are determined to be a CMM
level 3 organization by June!”

* * *
You and your peers start working on the analysis of

the new project. This is difficult because you have no
requirements. But, from the 10-minute introduction
given by BB on that fateful morning, you have some idea
of what the product is supposed to do.

Corporate process demands that you begin by cre-
ating a use-case document. You and your team begin enu-
merating use cases and drawing oval and stick diagrams.

Philosophical debates break out among the team.
There is disagreement as to whether certain use cases
should be connected with <<extends>> or <<includes>>
relationships. Competing models are created, but nobody
knows how to evaluate them. The debate continues,
effectively paralyzing progress.

After a week, somebody finds the iceberg.com Web
site that recommends disposing entirely of <<extends>>
and <<includes>> and replacing them with <<precedes>>
and <<uses.>> The documents on this Web site, authored
by Don Sengroiux, describe a method known as Stalwart
analysis, which claims to be a step-by-step method for
translating use cases into design diagrams.

More competing use-case models are created using
this new scheme; but again, nobody agrees on how to
evaluate them. And the thrashing continues.

More and more, the use-case meetings are driven
by emotion rather than reason. If it weren’t for the fact
that you don’t have requirements, you’d be pretty upset
by the lack of progress you are making.

The requirements document arrives on the 15th of
February. And then again on the 20th, 25th, and every
week thereafter. Each new version contradicts the previ-
ous. Clearly, the marketing folks who are writing the

base structures and presentation formats. Next
time we meet, it’ll be as a group, and we’ll start
identifying the most important features of the
system.

A week later, your nascent team meets with
Jay. They spread the existing user-story cards out
on the table and begin to get into some of the
details of the system.

The meeting is very dynamic. Jay presents
the stories in the order of their importance. There
is much discussion about each one. The developers
are concerned about keeping the stories small
enough to estimate and test. So they continually
ask Jay to split one story into several smaller sto-
ries. Jay is concerned that each story has a clear
business value and priority, so as he splits them, he
makes sure this stays true.

The stories accumulate on the table. Jay
writes them, but the developers make notes on them
as needed. Nobody tries to capture everything that
is said. The cards are not meant to capture every-
thing; they are just reminders of the conversation.

As the developers become more comfortable
with the stories, they begin writing estimates on
them. These estimates are crude and budgetary, but
they give Jay an idea of what the story will cost.

At the end of the meeting, it is clear that there
are many more stories that could be discussed. It is
also clear that the most important stories have been
addressed and that they represent several months’
worth of work. Jay closes the meeting by taking the
cards with him and promising to have a proposal for
the first release in the morning.

~ ~ ~
The next morning, you reconvene the meet-

ing. Jay chooses five cards and places them on the
table.

“According to your estimates, these cards
represent about fifty points worth of work. The last
iteration of the previous project managed to get
fifty points done in three weeks. If we can get these
five stories done in three weeks, we’ll be able to
demonstrate them to Russ. That will make him feel
very comfortable about our progress.”

Jay is pushing it. The sheepish look on his
face lets you know that he knows it too. You reply,

509
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

requirements, empowered though they might be, are not
finding consensus.

At the same time, several new competing use-case
templates have been proposed by the various team mem-
bers. Each presents its own particularly creative way of
delaying progress. The debates rage on.

On March 1, Percival Putrigence, the process proc-
tor, succeeds in integrating all the competing use-case
forms and templates into a single, all-encompassing form.
Just the blank form is 15 pages long. He has managed to
include every field that appeared on all the competing
templates. He also presents a 159-page document describ-
ing how to fill out the use-case form. All current use cases
must be rewritten according to the new standard.

You marvel to yourself that it now requires 15
pages of fill-in-the-blank and essay questions to answer
the question, “What should the system do when the user
hits return?”

The corporate process (authored by L. E. Ott,
famed author of “Holistic analysis: A progressive dialec-
tic for software engineers”) insists that you discover all
primary use cases, 87% of all secondary use cases, and
36.274% of all tertiary use cases before you can com-
plete analysis and enter the design phase. You have no
idea what a tertiary use case is. So in an attempt to meet
this requirement, you try to get your use-case document
reviewed by the marketing department. Maybe they
know what a tertiary use case is.

Unfortunately, the marketing folks are too busy
with sales support to talk to you. Indeed, since the project
started, you have not been able to get a single meeting
with marketing. The best they have been able to do is
provide a never-ending stream of changing and contra-
dictory requirements documents.

While one team has been spinning endlessly on the
use-case document, another has been working out the
domain model. Endless variations of UML documents
are pouring out of this team. Every week, the model is
reworked. The team members can’t decide on whether to
use <<interfaces>> or <<types>> in the model. A huge
disagreement has been raging on the proper syntax and
application of OCL. Others in the team just got back
from a five-day class on “catabolism” and have been pro-
ducing incredibly detailed and arcane diagrams that
nobody else can fathom.

On March 27, with one week to go before analysis
is to be complete, you have produced a sea of documents

“Jay, this is a new team, working on a new project.
It’s a bit presumptuous to expect that our velocity
will be the same as the previous team’s. However, I
met with the team yesterday afternoon, and we all
agreed that our initial velocity should, in fact, be
set to fifty story points for every three weeks. So
you’ve lucked out on this one.”

“Just remember,” you continue, “that the
story estimates and the velocity are very tentative
at this point. We’ll learn more when we plan the
iteration and even more when we implement it.”

Jay looks over his glasses at you as if to say,
“Who’s the boss around here anyway?” Then he
smiles and says, “Yeah, don’t worry, I know the
drill by now.”

Jay then puts 15 more cards on the table. He
says, “If we can get all these cards done by the end
of March, we can turn the system over to our beta
test customers. And we’ll get good feedback from
them.”

You reply, “OK, so we’ve got our first itera-
tion defined, and we have the stories for the next
three iterations after that. These four iterations
will make our first release.”

“So,” says Jay, “Can you really do these five
stories in the next three weeks?”

“I don’t know for sure Jay,” you reply, “Let’s
break them down into tasks and see what we get.”

So Jay, you, and your team spend the next
several hours taking each of the five stories that
Jay chose for the first iteration and breaking it
down into small tasks. The developers quickly real-
ize that some of the tasks can be shared between
stories and that other tasks have commonalities
that can probably be taken advantage of. It is clear
that potential designs are popping into the devel-
opers’ heads. From time to time, they form little
discussion knots and scribble UML diagrams on
some cards.

Soon, the whiteboard is filled with the tasks
that, once completed, will implement the five sto-
ries for this iteration. You start the sign-up process
by saying, “OK, let’s sign up for these tasks.”

“I’ll take the initial database generation,”
says Pete, “That’s what I did on the last project,
and this doesn’t look very different. I estimate it at
two days.”

510
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

and diagrams, but you are no closer to a cogent analysis
of the problem than you were on January 3.

* * *
And then, a miracle happens.

* * *
On Saturday, April 1, you check your e-mail from

home. You see a memo from your boss to BB. It states
unequivocally that you are done with the analysis!

You phone your boss and complain, “How could
you have told BB that we were done with the analysis?”

“Have you looked at a calendar lately?” he
responds, “It's April 1!”

The irony of that date does not escape you. “But
we have so much more to think about. So much more to
analyze! We haven’t even decided whether to use
<<extends>> or <<precedes>>!”

“Where is your evidence that you are not done?”
inquires your boss impatiently.

“Whaaa....”
But he cuts you off: “Analysis can go on forever, it

has to be stopped at some point. And since this is the date
it was scheduled to stop, it has been stopped now. On
Monday I want you to gather up all existing analysis mate-
rials and put them into a public folder. Release that folder
to Percival so that he can log it in the CM system by Mon-
day afternoon. Then get busy and start designing.”

As you hang up the phone, you begin to consider
the benefits of keeping a bottle of bourbon in your bot-
tom desk drawer.

* * *
They threw a party to celebrate the on-time com-

pletion of the analysis phase. BB gave a colon stirring
speech on empowerment. And your boss, another 3 mm
taller, congratulated his team on the incredible show of
unity and teamwork. Finally, the CIO takes the stage and
tells everyone that the SEI audit went very well, and he
thanks everyone for studying and shredding the evalua-
tion guides that were passed out. Level 3 now seems
assured and will be awarded by June.

(Scuttlebutt has it that managers at the level of BB
and above are to receive significant bonuses once the SEI
awards level 3.)

As the weeks flow by, you and your team work on
the design of the system. Of course you find that the
analysis that the design is supposedly based upon is
flawed... no, useless... no, worse than useless. But when
you tell your boss that you need to go back and work

“OK, well then I’ll take the login screen,”
says Joe.

“Aw darn,” says Elmo, the junior member of
the team, “I’ve never done a GUI, and I kinda
wanted to try that one.”

“Ah, the impatience of youth,” Joe says
sagely, with a wink in your direction, “You can
assist me with it, young Jedi.” To Jay, he says, “I
think it’ll take me about three days.”

One by one, the developers sign up for tasks
and estimate them. Both you and Jay know that it is
better to let the developers volunteer for tasks than
it is to assign the tasks to them. You also know full
well that you daren’t challenge any of the develop-
ers’ estimates. You know these guys, and you trust
them. You know they are going to do the very best
they can.

The developers know that they can’t sign up
for more than they finished in the last iteration they
worked on. Once each developer has filled his
schedule for the iteration, he stops signing up for
tasks.

Eventually, all the developers have stopped
signing up for tasks. But, of course, there are still
tasks left on the board.

“I was worried that that might happen,” you
say. “OK, there’s only one thing to do, Jay. We’ve
got too much to do in this iteration. What stories or
tasks can we remove.”

Jay sighs. He knows that this is the only
option. Working overtime at the beginning of a
project is insane, and projects where he’s tried it
have not fared well.

So Jay starts to remove the least important
functionality. “Well, we really don’t need the login
screen just yet. We can simply start the system in
the logged-in state.”

“Rats!” cries Elmo. “I really wanted to do
that.”

“Patience, Grasshopper,” says Joe. “Those
who wait for the bees to leave the hive will not
have lips too swollen to relish the honey.”

Elmo looks confused.

Everyone looks confused.

“So...,” Jay continues, “I think we can also
do away with...”

511
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

some more on the analysis to shore up its weaker sec-
tions, he simply states, “The analysis phase is over. The
only allowable activity is design. Now get back to it.”

So, you and your team hack the design as best you
can, unsure of whether the requirements have been prop-
erly analyzed or not. Of course it really doesn't matter
much since the requirements document is still thrashing
with weekly revisions, and the marketing department still
refuses to meet with you.

The design is a nightmare. Your boss recently mis-
read a book named The Finish Line in which the author,
Mark DeThomaso, blithely suggested that design docu-
ments should be taken down to code-level detail.

“If we are going to be working at that level of
detail,” you ask, “why don’t we just write the code
instead?”

“Because then you wouldn’t be designing, of
course. And the only allowable activity in the design
phase is design!”

“Besides,” he continues, “we have just purchased a
company-wide license for Dandelion! This tool enables
“round-the-horn engineering!” You are to transfer all
design diagrams into this tool. It will automatically gen-
erate our code for us! It will also keep the design dia-
grams in sync with the code!”

Your boss hands you a brightly colored, shrink-
wrapped box containing the Dandelion distribution. You
accept it numbly and shamble off to your cubicle. Twelve
hours, eight crashes, a disk reformatting, and eight shots
of 151 later, you finally have the tool installed on your
server. You consider the week your team will lose while
attending Dandelion training. Then you smile and think,
“Any week I’m not here is a good week.”

Design diagram after design diagram is created by
your team. Dandelion makes it very hard to draw these
diagrams. There are dozens and dozens of deeply nested
dialog boxes with funny text fields and check boxes that
must all be filled in correctly. And then there’s the prob-
lem of moving classes between packages...

At first, these diagrams are driven from the use
cases. But the requirements are changing so often that
the use cases rapidly become meaningless.

Debates rage about whether VISITOR or DECORA-

TOR design patterns should be employed. One developer
refuses to use VISITOR in any form, claiming that it’s not
a properly object-oriented construct. Another refuses to
use multiple inheritance since it is the spawn of the devil.

And so, bit by bit, the list of tasks shrinks.
Developers who lose a task sign up for one of the
remaining ones.

The negotiation is not painless. Several
times, Jay exhibits obvious frustration and impa-
tience. Once, when tensions are especially high,
Elmo volunteers to “Work extra hard to make up
some of the missing time.” You are about to correct
him when, fortunately, Joe looks him in the eye and
says, “When once you proceed down the dark path,
forever will it dominate your destiny.”

In the end, an iteration acceptable to Jay is
reached. It’s not what Jay wanted. Indeed, it is sig-
nificantly less. But it’s something the team feels
that they can achieve in the next three weeks. And,
after all, it still addresses the most important
things that Jay wanted in the iteration.

“So, Jay,” you say when things have quieted
down a bit. “When can we expect acceptance tests
from you?”

Jay sighs. This is the other side of the coin.
For every story the development team implements,
Jay must supply a suite of acceptance tests that
prove that they work. And the team needs these
long before the end of the iteration, since they will
certainly point out differences in the way Jay and
the developers imagine the system’s behavior.

“I’ll get you some example test scripts
today,” Jay promises. “I’ll add to them every day
after that. You’ll have the entire suite by the middle
of the iteration.”

~ ~ ~

The iteration begins on Monday morning
with a flurry of CRC sessions. By midmorning, all
the developers have assembled into pairs and are
rapidly coding away.

“And now, my young apprentice,” Joe says to
Elmo, “you shall learn the mysteries of test-first
design!”

“Wow, that sounds pretty rad,” Elmo replies.
“How do you do it?”

Joe beams. It’s clear that he has been antici-
pating this moment. “Laddy-buck, what does the
code do right now?”

“Huh?” replies Elmo, “It doesn’t do any-
thing at all, there is no code.”

512
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

Review meetings rapidly degenerate into debates
about the meaning of object orientation, the definition of
analysis vs. design, or when to use aggregation vs.
association.

Midway through the design cycle, the marketing
folks announce that they have rethought the focus of the
system. Their new requirements document is com-
pletely restructured. They have eliminated several
major feature areas and replaced them with feature
areas that they anticipate customer surveys will show to
be more appropriate.

You tell your boss that these changes mean that
you need to reanalyze and redesign much of the system.
But he says, “The analysis phase is over. The only allow-
able activity is design. Now get back to it.”

You suggest that it might be better to create a sim-
ple prototype to show to the marketing folks, and even
some potential customers. But your boss says, “The anal-
ysis phase is over. The only allowable activity is design.
Now get back to it.”

Hack, hack, hack, hack. You try to create some
kind of a design document that might actually reflect the
new requirements documents. However, the revolution of
the requirements has not caused them to stop thrashing.
Indeed, if anything, the wild oscillations of the require-
ments document have only increased in frequency and
amplitude. You slog your way through them.

On June 15, the Dandelion database gets cor-
rupted. Apparently the corruption has been progressive.
Small errors in the database accumulated over the
months into bigger and bigger errors. Eventually the
CASE tool just stopped working. Of course the slowly
encroaching corruption is present on all the backups.

Calls to the Dandelion technical support line go
unanswered for several days. Finally you receive a brief
e-mail from Dandelion, informing you that this is a
known problem, and the solution is to purchase the new
version (which they promise will be ready some time
next quarter) and then reenter all the diagrams by hand.

* * *
Then, on July 1, another miracle happens! You are

done with the design!
Rather than go to your boss and complain, you

stock your middle desk drawer with some vodka.
* * *

They threw a party to celebrate the on-time com-
pletion of the design phase and their graduation to CMM

“So, consider our task. Can you think of
something the code should do?”

“Sure.” Elmo says with youthful assurance,
“First, it should connect to the database.”

“And thereupon, what must needs be
required to connecteth the database?”

“You sure talk weird,” laughs Elmo. “I think
we’d have to get the database object from some
registry and call the Connect() method.”

“Ah. Astute young wizard. Thou perceivest
correctly that we requireth an object within which
we can cacheth the database object.”

“Is ‘cacheth’ really a word?”
“It is when I say it! So, what test can we

write that we know the database registry should
pass?”

Elmo sighs. He knows he’ll just have to play
along. “We should be able to create a database
object and pass it to the registry in a Store()
method. And then we should be able to pull it out of
the registry with a Get() method and make sure
it’s the same object.”

“Oh, well said, my prepubescent sprite!”
“Hey!”
“So, now, let’s write a test function that

proves your case.”
“But shouldn’t we write the database object

and registry object first?”
“Ah, you’ve much to learn my young, impa-

tient one. Just write the test first.”
“But it won’t even compile!”
“Are you sure? What if it did?”
“Uh...”
“Just write the test, Elmo. Trust me.”
And so Joe, Elmo, and all the other develop-

ers begin to code their tasks, one test case at a
time. The room in which they work is a-buzz with
the conversations between the pairs. The murmur
is punctuated by an occasional high-five when a
pair manages to finish a task or a difficult test case.

As development proceeds, the developers
change partners once or twice a day. Each devel-
oper gets to see what all the others are doing, and
so knowledge of the code spreads generally
throughout the team.

Whenever a pair finishes something signifi-
cant, whether a whole task or just an important

513
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

level 3. This time you find BB's speech so stirring that
you have to use the restroom before it begins.

There are new banners and plaques all over your
workplace. They show pictures of eagles and mountain
climbers, and they talk about teamwork and empower-
ment. They read better after a few scotches. That reminds
you that you need to clear out your file cabinet to make
room for the brandy.

You and your team begin to code. But you rapidly
discover that the design is lacking in some significant
areas. Actually it’s lacking any significance at all. You
convene a design session in one of the conference rooms
to try to work through some of the nastier problems. But
your boss catches you at it and disbands the meeting say-
ing, “The design phase is over. The only allowable activ-
ity is coding. Now get back to it.”

The code generated by Dandelion is really hid-
eous. It turns out that you and your team were using
association and aggregation the wrong way after all.
All the generated code has to be edited to correct these
flaws. Editing this code is extremely difficult because it
has been instrumented with ugly comment blocks that
have special syntax that Dandelion needs in order to
keep the diagrams in sync with the code. If you acci-
dentally alter one of these comments, then the dia-
grams will be regenerated incorrectly. It turns out that
“round-the-horn engineering” requires an awful lot of
effort.

The more you try to keep the code compatible with
Dandelion, the more errors Dandelion generates. In the
end, you give up and decide to keep the diagrams up to
date manually. A second later, you decide there’s no
point in keeping the diagrams up to date at all. Besides,
who has time?

Your boss hires a consultant to build tools to count
the number of lines of code that are being produced. He
puts a big thermometer graph on the wall with the num-
ber 1,000,000 on the top. Every day he extends the red
line to show how many lines have been added.

Three days after the thermometer appears on the
wall, your boss stops you in the hall. “That graph isn't
growing fast enough. We need to have a million lines
done by October 1.”

“We aren't even sh-sh-sure that the proshect will
require a m-million linezh,” you blather.

“We have to have a million lines done by October
1,” your boss reiterates. His points have grown again, and

part of a task, they integrate what they have with
the rest of the system. Thus, the code base grows
daily, and integration difficulties are minimized.

The developers communicate with Jay on a
daily basis. They go to him whenever they have a
question about the functionality of the system or
the interpretation of an acceptance test case.

Jay, good as his word, supplies the team with
a steady stream of acceptance-test scripts. The
team reads these carefully and thereby gains a
much better understanding of what Jay expects the
system to do.

By the beginning of the second week, there is
enough functionality to demonstrate to Jay. Jay
watchs eagerly as the demonstration passes test
case after test case.

“This is really cool,” Jay says as the demon-
stration finally ends. “But this doesn’t seem like
one-third of the tasks. Is your velocity slower than
anticipated?”

You grimace. You’ve been waiting for a good
time to mention this to Jay, but now Jay is forcing
the issue.

“Yes, unfortunately we are going slower than
we had expected. The new application server we are
using is turning out to be a pain to configure. Also, it
takes forever to reboot, and we have to reboot it
whenever we make even the slightest change to its
configuration.”

Jay eyes you with suspicion. The stress of last
Monday’s negotiations has still not entirely dissi-
pated. He says, “And what does this mean to our
schedule? We can’t slip it again, we just can’t.
Russ will have a fit! He’ll haul us all into the
woodshed and ream us some new ones.”

You look Jay right in the eyes. There’s no
pleasant way to give someone news like this. So you
just blurt out, “Look, if things keep going like their
going, then we’re not going to be done with every-
thing by next Friday! Now it’s possible that we’ll
figure out a way to go faster. But, frankly, I wouldn’t
depend on that. You should start thinking about one
or two tasks that could be removed from the itera-
tion without ruining the demonstration for Russ.
Come hell or high water, we are going to give that
demonstration on Friday, and I don’t think you
want us to choose which tasks to omit.”

514
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

the Grecian formula he uses on them creates an aura of
authority and competence. “Are you sure your comment
blocks are big enough?”

Then, in a flash of managerial insight he says, “I
have it! I want you to institute a new policy among the
engineers. No line of code is to be longer than 20 charac-
ters. Any such line must be split into two or more—pref-
erably more. All existing code needs to be reworked to
this standard. That'll get our line count up!”

You decide not to tell him that this will require two
unscheduled man-months. You decide not to tell him
anything at all. You decide that intravenous injections of
pure ethanol are the only solution. You make the appro-
priate arrangements.

Hack, hack, hack, and hack. You and your team
madly code away. By August 1, your boss, frowning at
the thermometer on the wall institutes a mandatory 50-
hour workweek.

Hack, hack, hack, and hack. By September 1, the
thermometer is at 1.2 million lines, and your boss asks
you to write a report describing why you exceeded the
coding budget by 20%. He institutes mandatory Satur-
days and demands that the project be brought back down
to a million lines. You start a campaign of remerging
lines.

Hack, hack, hack, and hack. Tempers are flaring;
people are quitting; QA is raining trouble reports down
on you. Customers are demanding installation and user
manuals; salesmen are demanding advance demonstra-
tions for special customers; the requirements document
is still thrashing; the marketing folks are complaining
that the product isn’t anything like they specified, and the
liquor store won't accept your credit card anymore.
Something has to give. On September 15, BB calls a
meeting.

As he enters the room, his points are emitting
clouds of steam. When he speaks, the bass overtones of
his carefully manicured voice cause the pit of your stom-
ach to roll over. “The QA manager has told me that this
project has less than 50% of the required features imple-
mented. He has also informed me that the system crashes
all the time, yields wrong results, and is hideously slow.
He has also complained that he cannot keep up with the
continuous train of daily releases, each more buggy than
the last!”

He stops for a few seconds, visibly trying to com-
pose himself. “The QA manager estimates that, at this

“Aw, for Pete’s sake!” Jay barely manages to
stifle yelling his last word as he stalks away shak-
ing his head.

Not for the first time, you say to yourself,
“Nobody ever promised me project management
would be easy.” You are pretty sure it won’t be the
last time either.

~ ~ ~

Actually, things go a bit better than you had
hoped. The team does, in fact, have to drop one
task from the iteration, but Jay chooses wisely, and
the demonstration for Russ goes without a hitch.

Russ is not impressed with the progress, but
neither is he dismayed. He simply says, “This is
pretty good. But remember, we have to be able to
demonstrate this system at the trade show in July,
and at this rate it doesn’t look like you’ll have all
that much to show.”

Jay, whose attitude has improved dramati-
cally with the completion of the iteration, responds
to Russ by saying, “Russ, this team is working hard
and well. When July comes around, I am confident
that we’ll have something significant to demon-
strate. It won’t be everything, and some of it may
be smoke and mirrors, but we’ll have something.”

Painful though the last iteration was, it cali-
brated your velocity numbers. The next iteration
goes much better. Not because your team gets more
done than in the last iteration, but simply because
they don’t have to remove any tasks or stories in
the middle of the iteration.

By the start of the fourth iteration, a natural
rhythm is established. Jay, you, and the team know
exactly what to expect from each other. The team is
running hard, but the pace is sustainable. You are
confident that the team can keep up this pace for a
year or more.

The number of surprises in the schedule
diminishes to near zero; however, the number of
surprises in the requirements does not. Jay and
Russ frequently look over the growing system and
make recommendations or changes to the existing
functionality. But all parties realize that these
changes take time and must be scheduled. So the
changes do not cause anyone’s expectations to be
violated.

515
www.EBooksWorld.ir

Appendix C • A Satire of Two Companies

rate of development, we won't be able to ship the product
until December!”

Actually, you think it's more like March, but you
don't say anything.

“December!” BB roars with such derision that peo-
ple duck their heads as though he were pointing an
assault rifle at them. “December is absolutely out of the
question. Team leaders, I want new estimates on my desk
in the morning. I am hereby mandating 65-hour work-
weeks until this project is complete. And it better be
complete by November 1.”

As he leaves the conference room, he is heard to
mutter, “Empowerment—Bah!”

* * *
Your boss is bald; his points are mounted on BB's

wall. The fluorescent lights reflecting off his pate
momentarily dazzle you.

“Do you have anything to drink?” he asks. Having
just finished your last bottle of Boone's Farm, you pull a
bottle of Thunderbird from your bookshelf and pour it
into his coffee mug. “What's it going to take to get this
project done?” he asks.

“We need to freeze the requirements, analyze
them, design them, and then implement them.” You say
callously.

“By November 1?” your boss exclaims incredu-
lously. “No way! Just get back to coding the damned
thing.” He storms out, scratching his vacant head.

A few days later, you find that your boss has been
transferred to the corporate research division. Turnover
has skyrocketed. Customers, informed at the last minute
that their orders cannot be fulfilled on time, have begun
to cancel their orders. Marketing is reevaluating whether
or not this product aligns with the overall goals of the
company, etc., etc. Memos fly, heads roll, policies
change, and things are, overall, pretty grim.

Finally, by March, after far too many 65-hour
weeks, a very shaky version of the software is ready. In
the field, bug discovery rates are high, and the technical
support staff are at their wit's end trying to cope with the
complaints and demands of the irate customers. Nobody
is happy.

In April, BB decides to buy his way out of the
problem by licensing a product produced by Rupert
industries and redistributing it. The customers are molli-
fied, the marketing folks are smug, and you are laid off.

In March, there is a major demonstration of
the system to the board of directors. The system is
very limited and is not yet in a form good enough
to take to the trade show, but progress is steady,
and the board is reasonably impressed.

The second release goes even smoother than
the first. By now, the team has figured out a way to
automate Jay’s acceptance-test scripts. They have
also refactored the design of the system to the point
where it is really easy to add new features and
change old ones.

The second release is done by the end of
June and is taken to the trade show. It has less in it
than Jay and Russ would have liked, but it does
demonstrate the most important features of the sys-
tem. Though customers at the trade show notice
that certain features are missing, overall they are
very impressed. You, Russ, and Jay all return from
the trade show with smiles on your faces. You all
feel as though this project is a winner.

Indeed, many months later you are contacted
by Rufus, Inc. They had been working on a system
like this for their internal operations. They have
cancelled the development of that system after a
death-march project and are negotiating to license
your technology for their environment.

Indeed, things are looking up!

516
www.EBooksWorld.ir

Index

Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

/, 15, 17, 32-37, 39-40, 45-47, 49-51, 53-56, 58-63,
65-70, 72-73, 75, 77-78, 80-82, 91-92, 94,
106, 108, 114, 121-122, 124, 130, 143-145,
162, 172, 174-176, 180, 218, 238-240, 244,
353-354, 359, 368, 372-373, 403, 421, 429,
435, 437-439, 441, 452, 454-455, 462, 487,
492, 496, 506

//, 32-33, 35-37, 40, 45, 54, 60-63, 65-70, 73, 75, 81,
91-92, 106, 108, 114, 121-122, 143-145,
162, 175-176, 180, 218, 238-240, 244, 368,
372-373, 403, 421, 435, 437-439, 441, 452,
454

}, 24, 26, 33-41, 45-82, 91-93, 97, 102-104, 106-108,
112-115, 118-124, 130, 132-133, 135-139,
141-145, 151, 155-159, 162-172, 175-176,
178-186, 191, 206-208, 210-213, 215-217,
219-220, 222-224, 226-228, 230-233,
235-247, 271-272, 294, 298, 300-314, 321,
328-344, 348-353, 362-368, 370, 372-373,
375, 377, 388-395, 397-417, 421-423,
425-433, 435-441, 451-452, 455, 462

!=, 41, 91-93, 104, 107-108, 189, 223, 236-237, 240,
242, 353, 362, 452

<=, 37, 40, 165-166, 170, 172, 240, 243, 245

!, 41, 72, 91-93, 104, 107-108, 144, 189, 223,
236-237, 240, 242, 353, 362, 452, 511

&, 16, 51, 77-78, 104, 106, 108, 117-119, 161-162,
164, 166, 168, 170, 172, 175, 189, 235, 240,
243, 245, 277, 333, 343, 350, 425, 436,
454-455

--, 32, 45-51, 53, 55-56, 58-60, 72-73, 77-78, 80, 97,
102, 199, 262, 265-266, 282, 437-439, 454

<, 28, 32-33, 35-40, 51-52, 54, 60, 65-68, 70-71, 74,
79, 106, 108, 119, 132-133, 156-157,
165-166, 170, 172, 175, 212, 215, 218, 222,
226, 230, 235-241, 243-245, 294, 330,
340-341, 348, 351-353, 372, 375, 425, 436,
441, 451, 479, 509-511

||, 77-78, 162, 164, 169

==, 36-38, 40, 54, 57-58, 60-62, 65-69, 73-79, 108,
112, 115, 117, 122, 162, 164, 169, 175, 179,
191, 207, 212, 222, 230, 235-236, 238-239,
241, 243-245, 343, 348, 400-401, 410, 413,
425, 428, 436, 492, 496-498

>, 32, 37, 51, 104, 106-108, 112, 119-120, 132-133,
145, 156, 165-167, 170-172, 207-208,
215-216, 220, 226, 230, 233-234, 240, 243,
245, 263, 348, 372, 375, 441, 451-452,
454-455, 509-511

+, 25-26, 32-33, 35-38, 40-41, 48, 50-52, 54-58,
60-79, 81-82, 84, 87, 94, 96-98, 100-102,
104, 106-108, 111, 117, 119, 130-133, 136,
138-141, 144, 151-154, 156, 162, 164-166,
168-170, 172, 174-175, 179, 181, 186-187,
205-206, 214-215, 236, 239-245, 248-249,
254, 259, 263, 266-267, 270, 272-273, 276,
279-280, 282, 286, 293-294, 298-299, 302,
305, 307-311, 315-316, 318-324, 329-330,
339-341, 343-344, 347-348, 353-354,
357-359, 361-365, 367, 369-371, 373-374,

376-377, 388-389, 392, 396, 399, 401, 404,
407, 409, 412, 424-426, 429, 431, 436, 440,
444-447, 450, 452, 454-457, 459-461, 465,
473, 478-479, 481, 483, 485, 487, 491-492,
496, 501, 504

?:, 91-92

>=, 32, 108, 165-166, 170, 172, 240, 243, 245

A
Abort, 433-434, 447
abstract, 87, 94, 100-101, 103, 106, 111, 118-120,

122-123, 128-131, 133, 135, 139-141, 163,
166, 168, 195, 202, 205, 220, 222, 225-226,
228, 230, 233, 248, 259, 264-267, 269-270,
273, 277-278, 282, 285-286, 289-290, 316,
317-320, 322, 324, 347, 357, 361-362,
368-369, 376, 378, 403-404, 409, 412,
430-431, 438, 450, 460, 465, 482-483, 485

double, 122-123, 133, 220, 228, 357, 361-362, 483
exception, 123, 163
float, 483
generalization, 202, 482
generic, 101, 131, 133, 163, 168, 361
inheritance, 111, 139, 166, 168, 282, 318-319, 347,

483
instance, 119, 141, 205, 220, 222, 230, 270, 273,

286, 404, 485
int, 122, 139, 166, 220, 222, 226, 228, 230, 233,

404, 450
integers, 166
long, 118, 135, 205, 220, 485
members, 119, 123, 286, 378
name, 100, 131, 195, 220, 222, 266, 285, 289, 361,

369, 409, 430, 483, 485
pointers, 101, 106
primitive, 369
responsibilities, 123
short, 94, 106, 285, 357, 485
subclass, 122-123, 318
superclass, 123

abstract base classes, 100, 135
abstract classes, 101, 133, 264-265, 269, 282, 318,

483, 485
defined, 133

Abstract method, 103, 106, 166, 225
Abstract methods, 101, 111, 131, 139, 163, 168, 233,

316, 347, 378
Abstraction:, 194
access, 27-28, 119, 122, 138, 143-145, 177, 179-180,

187, 248, 279, 358, 362, 371, 373, 376-377,
380, 419, 424, 454, 476, 481-483, 486, 491

methods, 119, 145, 179, 187, 279, 424, 491
Access key, 371
accessors, 335, 337, 351-352, 354
accumulators, 452
accuracy, 20-21
ACM, 17
Action, 24, 148-150, 178-179, 182, 195-198, 274,

420-422, 424-427, 429-430, 435-436, 448,
457, 459-464, 484, 493-495, 499-500

Actors, 357, 380, 469, 471-472
adapters, 17, 319-320, 360, 500, 503
add method, 47, 120
adding, 17, 50, 56, 82-83, 100, 103-104, 119, 124,

141, 145, 154, 179, 195, 206-207, 209, 211,
238, 321, 328-329, 339, 345, 359, 382, 387,
391, 396, 420, 452, 478, 480

comments, 82
passwords, 179

Addition, 14, 103-104, 113, 124, 233, 249, 348, 359,
374, 380, 382, 448-449, 451-452, 482

address, 143, 148, 150, 152-154, 190, 194-195,
198-199, 209-211, 221-222, 229, 245-247,
276, 328, 357, 468-469, 507

Addresses, 12, 217, 470, 512

base, 12
fields, 512
number of, 12, 470

Addressing, 507
adjusting, 446
Administrator, 380-381, 432
aggregation, 479-480, 513-514

Exception, 480
String, 479

Agile methods, 11
agile software development, 1, 3-4, 8, 11, 19, 23, 31,

43, 85, 87, 95, 99, 111, 127, 135, 147, 151,
161, 173, 177, 189, 193, 205, 251, 253, 269,
275, 291, 293, 297, 317, 327, 355, 385, 387,
419, 443, 467, 489, 507

algorithm, 32, 34, 39, 56, 132-133, 161-163, 165-166,
168, 170-172, 200, 233, 236-237, 359, 371,
498

algorithms, 16, 154, 165, 167-168, 172, 233, 235, 371,
456, 498

set, 498
sort algorithm, 165

ALL, 1, 3-8, 11-14, 16-17, 19-22, 23-26, 28-29, 31-34,
36-39, 42, 43-44, 52, 59, 62, 64, 72, 76-77,
82-83, 85-86, 87-89, 91-92, 94, 95, 98,
99-100, 103-108, 111-113, 115-120, 122-124,
127-129, 132-134, 135-137, 139-141,
144-145, 147, 150, 151-154, 158, 161-164,
173-175, 177-178, 180-182, 187, 189-190,
193-195, 198-199, 201-202, 205, 207,
219-220, 230, 236-237, 240, 245, 251,
253-259, 261, 263, 265-267, 269, 271-274,
275-278, 282, 285-287, 290, 291, 293, 295,
297-298, 303-304, 306, 308, 310, 315,
317-325, 327-329, 331-332, 336, 341,
344-347, 350, 354, 355, 357, 362-364, 367,
371, 373-374, 376-379, 381-383, 385,
387-388, 391-392, 396, 402, 404, 406-408,
419, 424-425, 428-429, 431-432, 440-441,
443-450, 453-460, 462, 465, 467-474, 477,
480, 484-487, 489-493, 499-500, 504, 506,
507, 510-516

amplification, 194
amplitude, 513
AND, 1, 3-9, 11-17, 19-22, 23-29, 31-34, 36-39, 42,

43-53, 56-57, 59-60, 62-65, 68, 70-72,
75-78, 82-84, 85-86, 87-94, 95-98, 99-101,
103-108, 111-125, 127-134, 135-141,
144-145, 147-150, 151-159, 161-168,
170-172, 173-174, 176, 177-182, 184,
186-187, 189-192, 193-203, 205-209,
211-215, 217-220, 222-231, 233, 235-239,
241-243, 245, 248-249, 251, 253-268,
269-274, 275-282, 284-287, 290, 291,
293-295, 297-299, 301, 303-308, 310-311,
314-316, 317-325, 327-332, 334-342,
344-354, 355-374, 376-383, 385, 387-388,
391-392, 395-396, 402-404, 407-409,
417-418, 419-422, 424-434, 437-439, 441,
443-466, 467-487, 489-506, 507-516

AND function, 57
animating, 155
Animation, 433
anonymous, 176, 191, 360-363, 371, 493
ANY, 1, 6, 12-14, 20-21, 24-25, 27, 29, 37, 39, 45-48,

52, 62, 64, 82, 84, 88, 92, 97, 100, 103-106,
108, 113, 117, 119-120, 124, 128-129, 131,
133, 137, 143-144, 152, 155, 163, 165-166,
171, 174, 179, 182, 193, 196, 198-199,
201-203, 206, 217, 219, 235, 237, 241-242,
248-249, 254-255, 258, 261, 263, 267,
269-270, 277-279, 282, 286-287, 294, 303,
314-315, 318-319, 321, 329, 344-345, 357,
359-360, 369, 378-379, 381, 391-392, 396,
402, 404, 408, 424, 433, 446, 453, 458, 460,
462, 464-465, 469, 472, 474-476, 481-483,
485, 490, 493-495, 497, 508-509, 511-512,

517
www.EBooksWorld.ir

514-515
AOL, 17, 487
API, 28-29, 179, 208, 324, 345-347, 356, 362-363,

365, 367, 369-370, 373-374, 377, 381-383
application, 25-29, 43-44, 48, 51, 82, 90, 94, 96-98,

100-101, 103-105, 107, 109, 113, 118-121,
127-128, 130-131, 134, 139, 148, 155,
162-165, 168-170, 173-174, 177-178, 190,
194, 199, 201, 208-209, 233, 248-249,
253-254, 256-257, 259-260, 270-273,
275-280, 282-285, 287-289, 295, 331,
344-348, 356, 367, 374, 381, 402-403,
432-433, 447, 450-451, 453, 456, 466,
476-478, 481-486, 489, 510, 514

application layer, 346
Application server, 514
Applications, 96-97, 125, 136, 145, 170, 194, 248-249,

253, 256, 266, 268, 279, 290, 320, 345, 347,
354, 355, 361, 365, 402, 432, 446, 448, 450,
453, 456, 466, 476, 487, 490

architecture, 8, 14, 16, 21, 27, 29, 199, 256, 264,
278-279, 357-358, 367, 381-383, 385, 419,
443, 446-447, 457, 462, 464-465, 474, 476,
478, 481, 487

middleware, 14
Arguments, 114, 132, 136, 144, 157, 317, 362, 373,

479, 486, 504
example of, 136
multiple, 486
passing, 486
style, 317

Array, 32-34, 36-40, 51-52, 63, 81, 101, 118, 165-167,
170-172, 369, 497-498

of objects, 166
size, 32, 36-40
size of, 32, 36-37, 39
variable, 36, 497

array of, 32, 34, 38-39, 51, 101, 165, 369, 498
code, 32, 39, 101, 498
state, 498

Arrays, 165-166
elements, 166

arrays and, 165
for, 165

ASCII, 489
aspect ratio, 453, 456
aspects, 8, 94, 198, 380, 422, 443, 447, 466, 489
Assembly language, 491
Assertion, 48, 116-117
assets, 345
assignment, 504

this, 504
Assignments, 508
Association, 131, 196-198, 201, 206, 242, 262, 282,

295, 319, 370, 469, 474-475, 479-480, 491,
513-514

associative, 448
Assurance, 13, 367, 513

requirements, 513
Attributes, 100, 104, 124, 153, 179, 220, 281,

472-473, 479
Automated teller machine, 139
Average, 4, 282, 447, 490

B
background, 443
backups, 91, 513
Bag, 118
base, 12, 14, 16, 100-101, 105, 111-112, 114, 116-117,

119-120, 122, 124-125, 129, 133, 135-136,
138-139, 141, 163, 166-168, 184, 195, 200,
205, 220, 222, 226, 230, 242, 259, 286, 293,
321, 323-324, 347, 350-351, 356-358,
361-362, 387, 391-392, 409, 428, 438, 454,
465, 472, 482, 486, 502, 509, 514

identifying, 509
Base class, 16, 101, 105, 112, 114, 116-117, 119-120,

122, 136, 138-139, 141, 163, 166-168, 195,
205, 220, 222, 226, 230, 242, 259, 286, 293,
321, 324, 350-351, 357-358, 361-362, 387,
391-392, 428, 454, 465, 486

Basis, 5, 148, 194, 290, 355, 359, 382, 469, 514
Bit, 8, 36-37, 42, 90, 94, 95, 98, 107, 130-131, 161,

205, 231, 278, 286, 319, 325, 348, 437, 443,
455-456, 490, 498, 510, 512, 515

Bits, 42, 147, 161, 347, 445, 465, 477, 490
Block, 6, 17, 157-158, 433-434, 490
block diagrams, 490
Blocks, 5-6, 17, 157, 190, 341, 369, 497, 514-515

body, 12-14, 65, 153, 486
call, 486
local variables, 65
member, 12-13, 65

books, 101, 215, 319
bool, 91-92, 106-108, 118, 121-124, 135, 237,

240-242, 245-247, 475
Boolean, 32, 35-40, 57, 61, 66, 69, 73-74, 76-79, 91,

156-158, 162-163, 166-169, 171-172, 175,
185, 191, 333, 343, 375-376, 400, 403, 423,
428, 440, 474, 494, 498-499

false, 35-38, 40, 57, 73, 76-78, 91, 156-158,
162-163, 169, 172, 175, 185, 191, 375,
400, 403, 423, 440, 498

true, 32, 36-40, 57, 61, 66, 73, 76, 78, 91, 156-158,
162-163, 166, 169, 172, 175, 185, 375,
423, 440, 474, 494, 498-499

Boolean condition, 499
boolean expressions, 494
Braces, 462, 473-474
Brackets, 494
break, 8, 21, 23-24, 39, 48, 76, 85, 88, 90, 96, 102,

130, 259, 263, 421-422, 452, 509-510
do, 8, 39, 76, 85, 88, 96, 130, 259, 422, 509-510
if, 8, 21, 23-24, 39, 48, 76, 85, 88, 90, 96, 102, 130,

259, 263, 509-510
loops, 23
switch, 102, 421-422, 452

Browser, 34, 39, 476, 486
Bubble sort, 165, 170-171
Buffer, 17, 480, 491-493, 495-496
Bug, 16, 63, 88, 137, 516
Bugs, 89, 201, 236, 448
button, 130-131, 155, 401, 432-433, 446, 457-459,

463-464, 468
menus, 432

buttons, 155, 432, 456, 458-459, 471, 477
icons, 471
page, 458, 477
toggle, 458

byte, 381
bytes, 369

C
C, 1, 3-4, 9, 11, 17, 19, 22, 23, 31-32, 43, 85, 87,

91-94, 95-97, 99-101, 106, 108, 111, 117,
127, 131, 133, 135-136, 144, 147-148, 151,
155-156, 158-159, 161-162, 164, 169, 172,
173, 175, 177, 179, 187, 189, 192, 193, 195,
205, 214-215, 236, 249, 251, 253-254, 259,
263-264, 269, 275, 279, 291, 293, 297,
308-309, 316, 317, 319, 321, 327, 347-348,
353-354, 355, 362-363, 367, 369, 382-383,
385, 387-395, 418, 419, 424, 443-447, 454,
467, 473-474, 476, 478, 483, 485, 489, 492,
494-496, 501-502, 504, 507-516

C++, 87, 94, 96, 100-101, 106, 108, 111, 117, 131,
133, 136, 144, 179, 187, 214-215, 236, 249,
254, 259, 263, 279, 308-309, 316, 319,
347-348, 353-354, 392, 424, 444-447, 454,
473, 478, 483, 485, 504

Calendars, 32
Canada, 385, 443
Cancel, 13, 432, 463-464, 516
Cancel button, 432
Cards, 148, 194, 196, 200, 214-215, 217, 219, 235,

237, 239-242, 508-510
cascade, 88, 99, 103-104
case, 5, 12, 15, 17, 24, 26, 32-33, 45-46, 48, 50,

52-56, 59, 62, 70-72, 76, 82, 97, 100-103,
113, 117, 120-122, 130-131, 143, 147-150,
156-157, 164, 170-171, 178, 180-182, 190,
193-203, 205-208, 210, 212-216, 218-220,
222, 224-226, 228-230, 232, 234-244, 246,
248-250, 254, 259, 273, 275-276, 278, 280,
282, 284, 286, 288, 290, 291, 299, 315-316,
318, 322-323, 338, 345-346, 348, 355-356,
358, 360, 362, 364, 366, 368, 370, 372, 374,
376, 378, 380-383, 385, 402, 408, 421-422,
424-426, 429, 431, 448, 452-453, 455,
457-459, 461, 463, 467-473, 475-477, 479,
483, 485, 487, 493, 497-498, 500, 502,
504-505, 508-510, 513-514

error, 120, 148-150, 190, 195-198, 259, 424, 448,
477, 485

case statement, 422, 426
case statements, 103, 421, 424
case studies, 468
Case study, 117, 147, 193-194, 196, 198, 200, 202,

205-206, 208, 210, 212, 214, 216, 218, 220,
222, 224, 226, 228, 230, 232, 234, 236, 238,
240, 242, 244, 246, 248, 250, 275-276, 278,
280, 282, 284, 286, 288, 290, 291, 355-356,
358, 360, 362, 364, 366, 368, 370, 372, 374,
376, 378, 380, 382, 385, 467, 476

CASE tools, 5
Cast operator, 214
Catalog, 469, 472-475
catch blocks, 190, 341
Cell, 391, 401, 452
Cell phone, 401
Cells, 166, 449
change, 4, 6-9, 12-14, 17, 21-22, 23, 27-28, 31-32,

38-39, 42, 57, 62, 67, 77, 85, 88-94, 95-98,
99-100, 103-105, 108-109, 114, 120,
128-130, 134, 137-138, 140-141, 143-145,
150, 153, 161, 176, 179, 190, 194, 198, 201,
205-207, 220-229, 231, 242, 249, 256, 258,
260-261, 263-264, 266-267, 269, 276-279,
284, 286-287, 295, 297, 303-304, 306-307,
310-311, 315, 319, 321-322, 325, 329, 337,
341, 345, 347, 354, 359-361, 364-365, 371,
374-376, 382, 387, 396, 404, 418, 419, 426,
428, 438-439, 446, 453-454, 456, 458, 462,
470-471, 481-482, 508, 513-514, 516

change management, 470
Channels, 489-490
chapters, 11, 86, 94, 147, 291, 297, 385
Characters, 17, 90-91, 94, 174, 321, 478, 489-492,

495-496, 515
special, 478, 492, 495, 515

Charts, 15, 505-506
Check, 14, 25-26, 28, 36, 39, 43, 48, 89, 153, 190,

240, 273, 275, 299, 361-363, 381, 420, 422,
424, 445, 468, 470, 485, 498, 511-512

check boxes, 512
Child, 451
Choice, 20, 148, 176, 194, 213, 314, 322
Circle:, 102, 107
circles, 101, 103-104, 106-107, 155, 447, 476, 485,

490
drawing, 106-107, 155, 447

class, 16, 24-26, 32-37, 39, 41, 45-47, 49, 51, 53, 60,
72-73, 78, 80, 82, 87, 93-94, 95-98, 100-101,
103-108, 112-124, 128-130, 133, 135-145,
152, 154-158, 161-172, 173-176, 178-187,
191, 195-196, 198-199, 201-202, 205-211,
213, 215-216, 219-220, 222-224, 226-227,
230-233, 236, 242, 245, 248, 253-256,
258-259, 263, 265, 269-272, 274, 276-280,
282, 285-287, 293-295, 299-313, 316,
318-319, 321, 323-324, 328-333, 335-338,
340-342, 345, 347, 349-352, 354, 357-368,
370-378, 387, 389-400, 403-409, 412-417,
421-422, 424, 426-430, 435, 437-441,
450-451, 453-454, 456, 459-462, 464-465,
468, 470-474, 479-481, 483-486, 491-492,
500-503, 510

block, 157-158
child, 451
derived, 105, 113-114, 117, 119-120, 124, 136, 171,

179, 186, 220, 316, 323, 357-358, 450,
456, 502

hierarchy, 116, 119-120, 136, 140, 152, 195-196,
242, 276-277, 287, 293, 323-324, 347,
350, 387, 391-392, 395-396, 403, 406,
408, 450, 459

loop, 37, 162-164, 219, 248, 454, 456, 484-485
class diagrams, 501
.class files, 96
class relationships, 255, 282
ClassCastException, 392, 394
classes, 26, 34, 82, 95-97, 99-101, 111, 113, 115-118,

121-124, 129-130, 133, 135-137, 139-141,
145, 152, 159, 167, 170, 173, 177, 187,
195-196, 198-199, 215, 217, 220, 225, 229,
237, 245, 249, 253-256, 258-266, 269-271,
274, 275-285, 287-288, 297, 308, 315-316,
318, 322-324, 338, 345, 347-348, 357-358,
360, 363, 367, 376-378, 383, 387, 392, 396,
417-418, 427, 429, 432, 450-451, 454, 456,
459-462, 465, 469, 472-474, 476, 479-485,
487, 491-492, 500-502, 512

adapter, 118, 318, 322-324, 347, 360
arguments, 136, 479
choosing, 256, 316
client, 97, 100-101, 117-118, 130, 136-137, 139,

145, 259, 318, 367, 502

518
www.EBooksWorld.ir

composition, 198, 256, 260, 479-480, 502
data members, 123
Date class, 215, 245
derived classes, 111, 117, 124, 136, 323
diagram, 82, 140, 198-199, 259, 263, 276-277,

279-280, 282, 284, 287, 358, 360, 378,
462, 465, 469, 473, 476, 479, 481,
483-485, 491-492, 500-502, 512

inner, 152, 469, 500
instance variables, 480, 485
instances of, 122, 129, 177, 187, 269-271, 274,

347, 363, 377, 427, 479
Java Class Library, 360
language, 99-100, 308, 357, 473, 476, 482, 485,

491
nested, 429, 512
packages, 26, 253-256, 258-266, 275-276,

278-280, 282, 284-285, 287-288, 367,
376, 378, 481-483, 512

pair, 450-451, 474
polymorphism, 101, 111, 113, 133, 249
reusing, 279, 287, 461
separate, 34, 95-97, 137, 139-141, 145, 187,

323-324, 345, 357, 360, 367, 396
classes and, 26, 145, 170, 177, 199, 254, 269, 275,

297, 338, 476, 485, 501-502
cleaning, 42, 301
click, 155, 433-434, 457, 459, 463-465, 468
Client, 97, 100-101, 117-120, 130, 136-139, 145, 259,

318, 320, 331, 367, 445, 502-503
Client class, 100
clients, 101, 116-117, 120, 123, 128, 131, 134, 135,

137-139, 144-145, 259, 271, 277, 279, 295,
316, 319-324, 331, 491

Clock, 159, 297-299, 301-303, 305-311, 313, 315-316,
361, 365-366, 370-371

code, 4-5, 7-8, 13-14, 16-17, 23-28, 31-32, 39, 42, 43,
45-46, 48-50, 57, 59, 62, 70, 76, 83, 85,
87-91, 93-94, 100-101, 103-107, 112,
114-115, 117-120, 123-125, 130-132, 134,
136-137, 154-155, 161, 163-164, 174,
178-180, 186, 189-190, 195, 205, 207,
214-215, 219, 237, 240, 242-243, 249-250,
254-257, 261, 263-264, 269-271, 273, 275,
278-279, 284, 290, 291, 295, 297-299, 301,
306, 311, 314-315, 319, 322, 328-329, 337,
345, 347, 357, 371, 373-374, 376, 379, 382,
388, 391-392, 396, 402-404, 406-408, 417,
422, 424-425, 429, 431-434, 437, 439-441,
445-447, 454-455, 457, 462, 472, 476, 478,
483, 498, 501, 512-515

described, 107, 376, 433
editing, 89, 462, 514
options for, 249
rate, 5, 8, 13, 17, 195, 243, 279, 284, 445, 515

Coding, 90, 242, 315, 379, 431, 512, 514-516
collective ownership, 14
collision, 66
color, 8, 19

process, 8, 19
coming into, 490
Command, 24, 147, 151-159, 195, 205, 212, 294-295,

366, 441, 456-461, 463, 465, 500
Commands, 25, 91, 132, 152-155, 173, 294-295, 457

sql, 173
TYPE, 154

comment, 37, 39, 92, 424, 455, 473, 514-515
comments, 32, 34, 82, 117, 474, 514
Commit, 5, 356, 458
Common Sense, 105
Community, 202
Comparison, 267
competence, 515
Compiler, 429-430, 462, 476, 485
compiling, 285
complex systems, 9, 22
components, 1, 8, 19, 88, 91, 103, 140, 145, 278-279,

360-361, 396, 445, 476-477, 481, 486-487
declaration of, 103

Composition, 161, 198, 256, 260, 479-480, 502
composition of, 256, 260
Computer, 24, 130, 327, 337, 403, 432, 493, 496
Computer networks, 496
Computers, 179

function, 179
Concrete classes, 129-130, 269-271, 274, 378
Concurrency, 472
Condition, 130, 494, 499, 505-506
conditional, 92

Conditions, 64, 182, 358, 379, 420, 425, 449, 493-494,
499, 505-506

Configuration, 27, 91, 129, 263, 356-357, 387, 391,
402, 454, 482, 514

configuration control, 91
Connection, 16, 97, 173-174, 298, 320-325, 333, 339,

472
connections, 24, 329
console, 130
const, 103-104, 106-108, 112-113, 115, 118-124,

210-211, 226-228, 231-233, 237-238,
240-243, 245-247, 349-353, 451, 455-456

Constant, 6, 8, 15, 89-90
Constants, 143
Constructor, 118, 152, 156-157, 178, 212, 303,

364-365, 373-374, 417, 425, 437, 486
constructors, 178-179, 187, 286, 316

base class, 286
Container classes, 118
content, 7, 13
continuous integration, 14
Contract, 4-6, 117, 125, 444-446
contrast, 278
control, 4, 6, 14, 22, 89, 91, 98, 130-132, 139, 152,

155, 159, 177, 186-187, 267, 281, 318-319,
323, 350, 432, 447, 453, 482, 486, 499-500,
502, 504, 506, 508

Button, 130-131, 155, 432
execution, 500, 502
Label, 499
repetition, 89
Timer, 139, 500, 506
word, 453

Control system, 4, 89, 91, 482
controllers, 433
conversion, 182, 295, 462
converting, 461
Copyright, 1, 3, 11, 19, 23, 31, 43, 85, 87, 95, 99, 111,

127, 135, 147, 151, 161, 173, 177, 189, 193,
205, 251, 253, 269, 275, 291, 293, 297, 317,
327, 355, 385, 387, 419, 443, 467, 489, 507

Core, 199, 206, 217, 249, 462
costs, 15, 17, 167, 170, 179, 182, 325, 424-425, 428,

431
counters, 180, 500
CPU, 159, 298-299, 383
Creating, 4, 16, 27, 32, 100-101, 139, 190, 195, 205,

208, 249, 259-260, 269, 273, 285, 287, 301,
329, 341, 353, 368, 376, 404, 406, 446, 451,
467, 476, 484, 496, 503, 509

forms, 195, 476
new class, 404, 406
views, 467

Crystal, 8, 19
Currency, 473-475
current, 15-16, 21-22, 24, 55, 57, 62, 85-86, 90, 93,

95, 132, 155, 174, 182, 194, 215, 231, 235,
240, 244, 249, 275, 278, 295, 320, 325,
356-359, 362, 371-375, 379-382, 437, 449,
460-461, 463-464, 470, 473, 475, 507, 510

Customer, 4-7, 11-13, 27, 44, 148, 193-194, 235, 241,
321, 325, 327-328, 339, 356, 370, 381, 383,
513

customers, 3, 6-8, 12-13, 15, 20-22, 27-29, 92, 106,
193, 320-322, 355-356, 359, 396, 508, 510,
513, 515-516

cycle, 8, 87, 257-260, 271, 357, 369, 382, 391-392,
395, 447, 480, 490, 513

D
Data, 17, 22, 25-26, 28, 44-45, 97, 101, 103, 107, 123,

125, 129, 138, 148, 153-154, 170, 182, 194,
212, 215, 248, 267, 279, 298, 311, 316,
327-328, 332, 335, 337-339, 347, 354, 355,
358, 369-371, 373-374, 377-378, 380,
382-383, 396, 402, 424, 434, 453-454, 456,
467, 469-471, 476-477, 481, 483, 485-487,
489, 491, 504, 508

Double, 123, 215, 358, 371, 373, 483
Integer, 44, 215
Single, 44, 97, 103, 182, 267, 396, 454, 467,

470-471, 489
validation, 153-154

Data abstraction, 125
Data fields, 153, 347
Data members, 123, 339
Data model, 328
Data structures, 101, 103, 396, 402, 434
data structures and, 396

Data table, 424
Database, 5, 14-16, 21, 25-28, 148, 153-154, 159,

162, 173-174, 179-180, 189-190, 194-195,
206-209, 212-214, 217-219, 221-222, 234,
236-237, 248-249, 258-260, 266, 272-274,
276-278, 280, 284, 289, 327-329, 331-332,
335-339, 341, 345, 347, 353-354, 476,
481-483, 485, 510, 513

database design, 249
Database schema, 194, 266, 345
Databases, 26, 194-195, 249, 266, 272, 345, 353-354

Oracle, 272
queries, 194, 249

Date, 20-22, 148-150, 153, 175, 191, 194, 196-197,
199-203, 214-220, 233-247, 281, 295, 328,
372-375, 379-383, 468, 470, 474-475, 483,
507, 511, 514

Date:, 241, 243, 245
between, 243, 245

Dates, 6, 215, 235, 242-243, 245, 474
<dd>, 371
debugging, 91, 120, 362, 403
Declarations, 32, 36, 103, 259
Decomposition, 152
decorators, 354, 406-407
default, 7, 136, 207, 274, 280, 381, 438, 441, 458,

460, 473-474, 482, 495
defect, 13
defining, 507
Degrees of freedom, 323
delay, 156-159
deleting, 103, 149, 196, 212-213, 446, 480

files, 103
Deletion, 458-459, 480
deployment, 383
derived class, 114, 117, 316, 358
Deserialization, 369
design, 5, 7-8, 14-17, 23-27, 29, 42, 43, 45, 72, 82-83,

85-86, 87-94, 96-98, 99-100, 103-105,
107-108, 111-112, 114-117, 122-123,
127-128, 130-131, 134, 137, 143, 145,
147-148, 151-152, 159, 161, 164, 172, 176,
187, 192, 193-196, 201-203, 217, 219, 229,
233, 237, 241-242, 248-249, 251, 253-256,
258, 260-264, 266-268, 274, 275, 278-279,
290, 291, 295, 297, 299, 314, 316, 317-320,
324-325, 354, 356-357, 359-363, 365, 367,
369, 371, 373, 375, 377, 379, 385, 387-388,
418, 420, 424, 441, 443-451, 456-457, 459,
466, 467-468, 472, 474, 477, 479, 483, 487,
498, 506, 508-514, 516

desktop, 298
development, 1, 3-9, 11, 14-15, 17, 19, 21-22, 23, 25,

28, 31, 43, 85, 87-89, 92-94, 95, 98, 99, 105,
111, 116, 127, 135, 147, 151-152, 161, 173,
177, 189, 193, 205, 215, 236, 251, 253-254,
257, 269-270, 272, 275, 281, 284-285, 290,
291, 293, 297, 317, 327, 355-357, 379, 382,
385, 387, 419, 443, 446-448, 467, 486, 489,
507-508, 512-513, 516

devices, 93, 152-153, 323, 489, 508
Dictionary, 95, 99, 207, 261, 332, 450
Digital, 297-299, 301, 303, 305, 307, 309, 311, 313
Direct access, 362
Direction, 11, 24-26, 94, 131, 137, 261, 263, 265, 297,

314, 325, 355, 379-381, 383, 469, 471, 475,
477, 480, 483, 485, 502, 511

directory, 91, 257, 275, 370
Disk, 17, 368, 512
Distributed processing, 433
division, 15, 278, 448-449, 507, 516
document, 5, 25, 28, 117, 176, 315, 357, 359, 381,

472, 478, 506, 508-510, 512-513, 515
Documentation:, 472
documentation, 4-5, 7, 23-24, 27, 29, 87, 254, 315,

472
documents, 5, 7, 357, 444, 472, 509-510, 512-513
domain, 45, 249, 277, 280, 284, 289, 345, 446,

472-474, 476, 482-483, 486, 510
Domains, 139
double, 36, 38, 40, 96, 102, 112-115, 117, 121-123,

132-133, 162, 164, 167, 169, 211, 215-216,
219-220, 227-228, 231-232, 237-238,
240-241, 243, 247, 303, 357-359, 361-363,
371-373, 375, 398, 410-411, 413, 415, 483

long integer, 215
drawing, 83, 106-107, 155, 315, 433, 444, 446-447,

453, 463-464, 509
Driver, 13, 174, 298-302, 456

519
www.EBooksWorld.ir

Drivers, 356, 387
Drives, 13, 316, 388, 424
DROP, 490, 498, 515
duplicate code, 306, 406
duration, 8, 485, 491

menu, 485
Dynamics, 248

E
edges, 257
editing, 89, 462, 514
Effective, 3, 7-8, 16, 100, 281, 354, 369, 481, 490
effects, 1, 7, 52, 128, 201
Element, 101, 119, 174, 176, 378, 410-411, 414-415,

472, 478, 482
elements, 17, 27, 89-90, 95, 118-119, 122, 162, 166,

260-261, 279, 315, 355, 420, 444, 446-447,
457, 465, 472-473, 478, 482, 484-485, 492

form, 279, 315, 446, 472, 478
else, 13-14, 33, 35-37, 39, 51, 54, 57-58, 60-62,

65-80, 103, 107-108, 112, 157, 162, 164,
169, 177, 191, 199, 216-217, 257, 259, 261,
271-272, 281, 324, 359, 372, 375, 401, 404,
417, 448, 464, 508-510

else clause, 65-66
Email, 469-471
E-mail, 468-470, 477, 511, 513
encapsulation, 279, 424, 479, 481
endl, 119, 212, 215, 218, 222, 226, 230, 235-241,

243-244, 451
Engineering, 86, 87, 109, 122, 203, 250, 291, 356,

443, 487, 512, 514
Enter key, 432
Entities, 99, 154, 469, 472, 474-475, 483
Entity, 131, 213, 255, 467, 472-475, 480, 486
enum, 102-103, 112, 450
Enumeration, 316
Environment, 5-8, 15, 88-89, 130, 134, 236, 254, 257,

275, 284-285, 290, 369, 379, 441, 443-444,
490, 516

environments, 89, 257, 355
work, 257

Error, 3, 91, 116, 120, 148-150, 189-190, 195-198,
259, 272, 341-342, 373, 420, 424, 447-448,
462, 477-478, 485

errors, 3, 13, 43, 91, 120, 150, 198, 249, 272, 341,
448-449, 496, 505, 513-514

human, 43
establishing, 434
Event, 94, 152, 157, 174, 184, 360, 373, 420-427,

429, 432, 435-440, 457-464, 493-495,
497-499, 505-506

events, 152, 162, 182, 420-421, 424, 426, 433, 435,
438-439, 457-463, 490, 493, 498, 500, 503,
505-506

Exception, 15, 48, 104, 123, 156-159, 162-164, 169,
178, 190, 215, 272, 332-339, 341-343, 367,
429, 437, 439-441, 443, 480

exceptions, 120, 124, 190, 215, 336, 341
execute() function, 236
Execution, 153-154, 157, 391, 395, 485, 500, 502-503
EXISTS, 45, 98, 153, 176, 189, 248, 322, 354, 428,

473, 483, 502, 505
Expressions, 52, 494
extracting, 34, 42
Extreme programming (XP), 19

F
Factoring, 121-123
Failures, 5, 273, 358
FAT, 135-136, 145
Features, 12, 27, 85-86, 106, 120, 186, 358, 432,

445-449, 453-454, 456, 472, 482, 509,
515-516

Feedback, 5, 12, 21-22, 23, 242, 249, 257, 510
Fields, 34, 148, 153-154, 173, 194-195, 236, 279, 315,

347, 350-352, 512
File, 28-29, 45, 153, 248, 263, 408, 441, 453-454,

477-479, 481-482, 484, 486-487, 514
File system, 482
files, 5, 16, 27, 89, 96, 103, 208, 257, 259, 272, 275,

281, 290, 437, 447, 462, 466, 477-478,
481-482, 486

dependent, 290, 462, 481
field, 486
HTML, 477-478, 481
kinds of, 27, 103, 272, 477, 482
missing, 89

records, 477
flag, 91-92, 159, 403
Flags, 92, 477, 498
Flowchart, 499
Folder, 481, 511
Font, 450
Form, 11, 13, 24, 28-29, 36, 44, 124, 128, 133,

144-145, 149, 155, 196, 205, 271, 279, 297,
314-315, 319, 337, 347, 369, 379, 382-383,
391, 446, 449, 451, 453, 462, 467-469, 472,
476-478, 480-481, 486, 490, 493, 500, 506,
510, 512, 516

Designer, 128, 446, 472
formats, 509
Forms, 88-89, 148, 167, 195, 199, 338, 476, 510
Forwarding, 371
frames, 45, 48-50, 54, 61, 65-70, 75, 83, 95
Framework classes, 450, 459
Frameworks, 134, 348, 446, 466
Frequency, 261, 359, 513
friend, 424, 500-501
full backup, 91
Function, 6, 16, 23-24, 26, 31-34, 36-39, 42, 44, 46,

48, 52-53, 57, 62, 64-67, 70, 72, 75-76, 91,
101-104, 106-108, 112-116, 118, 120-122,
124, 132-133, 136-137, 144, 152, 155-156,
163, 166, 178-180, 187, 220, 222, 230-231,
236-237, 239, 242-243, 245, 256-257, 260,
271, 273, 282, 290, 294, 304, 329, 339, 341,
353-354, 357-362, 364, 374, 377-378,
391-392, 396, 403-404, 420, 426, 428, 446,
450-452, 455-456, 458-459, 463-464, 479,
485-487, 491-493, 495, 497, 504, 513

description, 396, 479, 485
prototype, 144, 513

Function calls, 451
functional decomposition, 152
Functions, 16, 23, 26, 28, 31, 34, 36-37, 42, 52, 68,

71, 97, 99-101, 103-104, 107, 113-114, 116,
118-120, 124, 133, 135, 145, 159, 168, 179,
184, 192, 209, 226, 242, 260, 270, 282, 286,
320-321, 324, 342, 351, 354, 361, 374, 378,
380, 391-392, 396, 404, 418, 424-425, 430,
437-438, 451, 454, 460, 465, 473, 476, 486,
491-492, 494-495, 500

components and, 396
execute(), 209, 226, 242, 425
in, 16, 23, 26, 28, 31, 34, 36-37, 42, 52, 71, 97,

99-101, 103-104, 107, 113-114, 116,
118-120, 124, 133, 135, 145, 159, 168,
179, 184, 209, 242, 260, 270, 282, 286,
320-321, 324, 342, 354, 361, 374, 378,
380, 391-392, 396, 404, 424-425, 430,
451, 454, 460, 465, 473, 476, 486,
491-492, 494-495, 500

point of view, 116

G
games, 44
gamma, 134, 145, 159, 161, 172, 176, 187, 274, 316,

325, 354, 379, 418, 441, 466, 487, 506
Gate, 182, 419-420
Gems, 187
Generator, 33, 396, 437, 476-478, 483-485, 487
GetNext, 484
global constants, 143
Global variable, 213, 273-274
global variables, 143, 213
Glue, 459-461
Google, 241
Gosling, James, 379
Granularity, 254-255
Graph, 5, 256-260, 265-266, 282, 370, 380, 498, 514
graphical user interface, 96, 444
Graphics, 382, 444
Grouping, 145, 253, 256, 260
guidelines, 26
guides, 511

H
<h1>, 479
Handle, 28, 48, 165, 170, 172, 304, 420, 506
Handles, 420, 424, 438-439, 505
handling, 95
Hanging, 261, 484
Hardware, 97, 132, 152, 323-324, 356-358, 361-362,

365, 368, 381-383, 388, 490-491
Head, 90-91, 507, 515-516

Height, 114, 116-117, 445
Help, 5-8, 13, 17, 20-21, 24, 32, 34, 44, 82, 86, 90, 96,

105, 153, 164, 190, 195, 207, 242, 251,
253-254, 315, 317, 327, 418, 424, 434, 444,
472, 474, 486, 498

Heuristic, 129-130
Hierarchy, 116, 119-120, 125, 127, 136, 140, 152,

195-196, 242, 276-277, 287, 293, 322-324,
347-348, 350, 353, 387-388, 391-392,
395-396, 403, 406, 408, 418, 449-450, 459,
504

hierarchy of, 387, 418
Hierarchy of classes, 387, 418
Hits, 337, 432, 459, 510
HTML, 476-479, 481, 483-484

I
Icon, 130, 433, 474, 477, 479, 491, 493-495, 499, 502
Icons, 449, 471, 474-476, 481, 493
Identification, 197
IEEE, 17
If statement, 37, 77, 112, 179-180
if statements, 103
If/else statements, 103
images, 403
Implementation, 12-13, 97, 101, 128-129, 131, 133,

135, 138, 147, 152, 157, 162, 166, 168,
171-172, 179-181, 184, 190-191, 194,
205-212, 214-220, 222-224, 226-234,
236-238, 240, 242, 244-246, 248-250, 260,
270, 272-274, 275, 277-278, 280-281, 284,
286-287, 289, 294, 310, 315, 322, 324, 331,
336-337, 340-341, 345-346, 350-351, 353,
357, 362, 365, 371, 378, 381, 383, 417, 419,
421, 423-425, 429, 431, 453, 456, 460, 465,
472-474, 486

implements, 15, 101, 131, 153, 157-159, 169, 171,
180, 190-191, 198, 209, 211, 220, 227, 236,
271-274, 294, 301-304, 306, 309-310, 313,
318, 322-324, 331, 336-337, 340-341, 347,
351-352, 360, 372, 375, 381, 389-390,
393-394, 397-399, 403, 405, 407, 415-417,
424, 426-427, 430, 459, 483-485, 503, 512

IMPLIED, 24, 130, 196, 256, 344, 476
import, 32-34, 41, 45-46, 49, 53, 80, 136, 155-156,

162-163, 169, 174, 178, 181, 183, 191, 263,
294, 299, 303, 305-307, 309, 311-312,
332-333, 335, 340-341, 369-370, 390, 395,
397, 399, 406, 409, 412, 414-416, 422, 435,
440, 481-483

importing, 482
IN, 1, 3-9, 11-17, 19-22, 23-29, 31-34, 36-40, 42,

43-45, 47-54, 57-59, 62-64, 67, 70-72, 77,
81-84, 85-86, 87-94, 95-98, 99-101,
103-108, 111-125, 127-134, 135-140,
143-145, 147-150, 151-159, 161-171,
173-174, 176, 177-180, 182, 184, 186-187,
189-191, 193-203, 205, 207-209, 213-215,
219-220, 222, 225, 229-231, 233-236,
239-245, 248-249, 251, 253-268, 270-274,
275-284, 286-288, 290, 291, 293-295,
297-299, 301, 303-304, 306, 308-311,
314-316, 317-325, 327-329, 331-332,
335-339, 341-342, 344-345, 347-349,
353-354, 355-371, 373-374, 376-383, 385,
387-388, 391-392, 395-396, 402-404, 406,
408, 417, 419-420, 422, 424-434, 439-441,
443-466, 467-487, 489-506, 507-516

Increments, 52, 70-71, 75, 85, 257, 408, 497
Indices, 166, 452
Indirection, 170, 303, 315
infinite, 177
Information:, 468
inheritance, 16, 111, 113, 121, 139, 161-162, 164,

166-168, 170, 172, 186, 262, 282, 308-309,
318-319, 347, 349-350, 353-354, 456, 483,
512

abstract base class, 139, 166, 168
Initialization, 37, 143, 152-153, 162-163, 180, 248,

271, 376, 498, 503
INPUT, 8, 28-29, 33, 92-94, 248, 321, 429, 439, 449,

486, 491, 495
Input stream, 486
Insert, 25, 297, 329, 333, 339, 341, 343, 477-479, 484
Insertion, 478-479, 484
installation, 379, 515
Instance, 66, 116, 119, 141, 158, 170, 176, 177-182,

187, 189-191, 205, 213, 215, 220, 222, 230,
270, 273, 286, 294, 310, 331, 338, 377, 391,

520
www.EBooksWorld.ir

404, 424, 426-427, 437, 478, 480, 485,
500-502

Instance method, 178-179, 205
Instance variable, 66
Instances, 48, 104, 122, 129, 158-159, 177, 179-182,

187, 191, 207, 249, 269-271, 274, 293-294,
303-304, 338, 345, 347, 363, 377-378, 396,
427-428, 477-480, 483, 486, 503

Integers, 24, 32, 34, 38-39, 51, 165-166, 475
Integration, 14, 86, 257, 382, 514
Interaction, 5, 7, 433-434, 457, 469
Interconnections, 153
Interfaces, 25, 97, 101, 118, 128-130, 132-134,

135-139, 141, 144-145, 154, 173, 254, 259,
270, 274, 282, 298-299, 316, 318-320, 324,
341, 345, 359, 378, 392, 432-433, 460, 462,
465, 482-483, 485, 502, 510

Iterator, 483, 485
List, 101, 118, 154

Interference, 496
Internet, 6, 476
Interrupt, 490-491, 495-496
interrupts, 297, 490-491, 495

stage, 297
Intersection, 447
Introduction, 193, 381, 443, 445, 509

history, 381, 443, 445
Isolation, 25-26, 116, 130, 255, 273, 278, 424
Item, 108, 174, 328-330, 337-341, 456-459, 484
Iterate, 37, 306

through, 306
Iteration, 12-16, 20-22, 27, 37, 39, 85, 90, 94, 120,

193-194, 196, 198, 200, 202-203, 248-249,
295, 381, 476, 507, 509-512, 514-515

Iterator, 72, 104, 107, 119, 155, 236, 240, 242,
306-307, 309, 312, 397, 400, 410-411,
414-417, 452, 483-485

string class, 236
iterators, 255, 455-456, 484

J
Java, 8, 19, 32-34, 36-39, 41, 45-47, 49-51, 53, 55-56,

58-60, 72-73, 77-78, 80, 96-97, 100-101,
111, 117, 129-131, 136, 151, 155-158,
162-163, 165-172, 173-174, 178, 180,
190-191, 254, 259, 263, 271-272, 279, 294,
299-313, 319, 329-330, 332-333, 335-343,
357, 360, 362, 366, 369-372, 374-377, 379,
381-383, 388-390, 392-399, 404-407, 409,
412-417, 421-422, 424, 426-427, 430,
434-435, 437, 439-441, 473, 482-483, 485,
491, 500, 504

assignment, 504
Class Library, 254, 360
invocation, 504

Java Class Library, 360
Java code, 130, 371, 388, 441
Java Foundation Classes, 383
Java Virtual Machine, 381, 383
JDBC, 328, 333, 345
Jitter, 256
Job, 7, 89, 93, 153, 195, 322, 361, 424
Join, 507
JUnit, 33-34, 41, 45-46, 49, 53, 80, 156, 178, 181,

183, 299, 303, 305, 311, 332, 335, 348, 390,
395, 399, 406, 409, 422, 440

K
keyboard, 13, 45, 54, 63, 65, 68, 71-72, 75-76, 90-92,

94
Keys, 328

L
Languages, 29, 91, 111, 117, 129, 131, 136, 139, 159,

172, 187, 189, 192, 259, 316, 319, 347, 418,
441, 483, 485

layers, 128-129, 345, 376
layouts, 195
Leading, 14, 17, 45, 136, 179, 291, 499-500
Leaf, 448, 450-451
Libraries, 103, 128, 131, 140, 255, 259, 345

shared, 103, 140, 255
licensing, 385, 443, 516
life cycles, 99
LIKE, 5, 7-8, 19-22, 28, 36, 38, 42, 43-44, 48, 57, 65,

67, 70, 75-78, 87, 89, 91-93, 97, 100, 104,
106, 111-112, 115-117, 131-132, 136, 138,
140, 144, 152, 161-165, 173, 189-191,

193-194, 201, 235, 248, 255, 257-260, 266,
270, 275-276, 279, 284, 287, 294-295, 298,
301, 303, 306, 308, 314, 318-320, 328, 331,
338, 341, 352-353, 355, 359-360, 362,
367-369, 371, 374, 378, 391, 396, 403-404,
417, 420, 424-425, 444, 448, 451, 453, 456,
458-459, 473-474, 478, 481, 483, 485-486,
492, 498-499, 507, 514-516

links, 477, 480, 501-502
Linux, 236, 387
List, 6, 21, 41, 48-50, 59, 72, 88-89, 101-102, 104,

106, 118, 154-156, 174, 198, 202, 219, 234,
236, 242, 293-295, 304, 397, 408, 411, 414,
447, 452, 458-459, 469, 471-472, 474, 479,
492, 504, 512

Lists, 39, 471, 493
Loading, 105
Local variables, 65

member variables, 65
locations, 474, 483, 489
locked state, 182, 420, 426, 438
Locks, 180, 182, 432
Logical operators, 103
Loop, 37, 52, 92, 159, 162-164, 219, 239-240, 248,

454, 456, 484-485
loops, 23, 42, 455, 484
low-level, 94, 127-128, 131-132, 134, 172, 369-370

M
machine, 113, 139, 182-184, 186, 236, 381, 383,

419-420, 424-426, 428-429, 431-434, 437,
440, 458-464, 492-496

main function, 34, 364, 378
maintainability, 108, 256, 279
Manufacturing, 356
Map, 5, 13, 90, 208, 240, 260, 449, 472, 476, 479
<map>, 208
mapping, 346, 449, 453
Maps, 12, 207
Marketing, 12, 356-357, 359, 507, 509-510, 512-513,

515-516
math, 33, 35, 38, 40, 62, 65, 73, 75-78, 448-449
Matrices, 449-450
Matrix, 391, 396, 449-452, 454
Maximum, 32, 34, 37, 39, 51, 118, 339, 431, 468, 490
Maximum value, 34
Mean, 5, 7, 14, 22, 44-45, 62, 77, 87, 137, 164, 259,

267, 294, 396, 474, 513-514
measurement, 268, 380
Media, 87
Mediator, 173-176
Member, 8, 11-13, 56-57, 65, 100, 103, 114, 121, 135,

143, 150, 197-198, 207, 218, 221, 229-231,
241, 282, 286, 373, 377, 473, 511

Listing, 103, 121, 135, 143, 207, 218, 229-231,
241, 377

Member functions, 100, 135, 282, 473
Memory, 57, 96, 114, 118-119, 139, 172, 177, 215,

248-249, 338, 368-369, 373-374, 383
leak, 215

Menus, 432
menu items, 432

Messages, 130, 139-140, 209, 317, 365, 460-462,
468, 470-471, 477, 480, 484-485, 502-504

Method, 7, 16-17, 22, 38-39, 47, 50-51, 55, 59, 62, 87,
101, 103-104, 106-107, 113, 117, 119-120,
123, 129, 133, 136, 140, 147-148, 150, 151,
153-155, 159, 161-168, 170-172, 176,
178-180, 187, 189-191, 194, 198-199, 202,
205, 207, 209, 212, 220-230, 234-235, 249,
270-271, 276, 279-280, 284, 293, 299, 303,
310, 315, 323-324, 328, 331, 337-338,
350-351, 361, 370-371, 374, 376-377,
387-388, 391-392, 403-404, 406, 408, 426,
429, 450, 453-457, 459, 461, 463, 469-470,
483-486, 491-493, 503-504, 509, 513

Add, 16, 47, 50-51, 55, 59, 103-104, 119-120, 123,
136, 140, 148, 153, 155, 179, 194, 209,
230, 271, 293, 303, 323-324, 328, 331,
387, 391, 403, 408, 454

Clear, 87, 101, 107, 117, 120, 161, 170, 178, 276,
337, 483-484, 509

Close, 16-17, 106-107, 284, 387, 484
Exists, 153, 176, 189, 483
Readline, 162, 164

methods, 11, 19, 25, 34, 45, 88, 96, 101, 104, 106,
111, 119, 124, 127, 131, 133, 135, 137,
139-140, 145, 152-154, 163, 165, 168, 171,
174, 179, 181-182, 187, 190, 199-200, 202,

211, 227, 233, 263, 270-271, 276-280,
283-285, 287, 311, 315-316, 319, 321, 324,
331, 338, 344, 347-348, 354, 363, 368, 374,
378, 387-388, 391-392, 396, 403, 407-408,
424, 426, 428, 447, 465, 468, 472, 479, 485,
491-492, 500, 502

class name, 485
definitions, 348
driver, 174
get, 88, 106, 200, 263, 271, 311, 321, 331, 368,

374, 424, 491-492, 500
getters, 45, 344
initialize, 391
invoking, 424
responsibility, 96, 319, 396, 500
setters, 45, 344
turn, 131, 374, 403

Metrics, 253, 262-263, 267-268, 281-285, 287, 290
Millisecond, 297, 490
Minimum, 28, 42, 89, 353, 431
Mode, 5, 7, 358, 463-464
Modeling, 8, 19, 467, 487, 490, 506
Models, 127, 202, 212, 233, 315-316, 337, 447, 472,

474, 509
Modem, 97, 320-324, 387-394, 403-408, 480, 489-490
Modems, 320-321, 387-388, 391, 396, 403, 496
Module, 14, 17, 26-27, 29, 31-32, 42, 87-91, 93-94,

95, 100, 104-105, 108, 120, 125, 129,
143-144, 179, 195, 256, 261, 273-274, 299,
482

Modules, 14, 17, 31-32, 88, 90, 93, 99-100, 103-104,
108, 127-129, 131, 144, 179, 233, 259, 261,
269, 273-274, 278, 299, 454

Monitor, 380, 383, 489
motion, 130, 463-464
Mouse, 13, 16, 85, 89, 155, 433, 457, 462-464
move, 13, 24-25, 33, 35, 45, 123, 257, 259, 299, 306,

327, 456-457, 498
Multiple, 16, 33, 35, 38, 40, 139, 155, 178, 180, 235,

249, 256, 275, 303-304, 307-309, 347, 353,
358, 406, 425, 486, 489, 499, 506, 512

Multiple inheritance, 139, 308-309, 347, 353, 512
Multiplexing, 490
Multiplexor, 489, 491, 493, 495, 497, 499, 501, 503,

505
Multiplication, 448-449
Multiplicity, 295, 474-475
multitasking, 155
Multithreading, 16

N
named, 25, 65-66, 101, 103, 106, 116, 162, 166, 168,

180, 189, 191, 198, 205, 220, 229-230, 248,
259, 263, 270, 274, 279, 293, 303, 318,
356-357, 360, 363, 377, 387, 404, 424, 457,
473-474, 478-479, 483-486, 493, 504, 512

pointers to, 101
names, 17, 36, 57, 108, 129, 179, 181, 263, 297, 314,

453, 456, 473-474, 478, 483-484, 493, 502
Namespace, 107, 131, 144, 237, 243
namespace std, 107
nanoseconds, 42
Nested, 419, 421-422, 424-426, 429, 494, 512
nesting, 504
Network, 17, 236, 327, 331, 433, 494
Network adapter, 17
networks, 496
next(), 306-307, 309, 312, 335, 339, 344, 397, 400,

410-411, 415, 417
Next Page, 468, 473, 481, 494, 498-499, 501-502
Nodes, 257, 450-452
Noise, 15
NOR, 8, 36, 85, 104, 108, 117, 166, 190, 266, 282,

331, 379, 420, 462, 466, 469, 472, 481, 483,
500

Normal, 100, 113, 118, 139, 148, 182, 186, 190,
193-194, 249, 295, 348, 420, 458-459, 499,
504-505

Notation, 276, 458, 467-470, 472-474, 476, 478-484,
486-487, 489-490, 492, 494, 496, 498, 500,
502, 504, 506

O
Object:, 159

oriented programming, 100, 108, 134, 167, 467
object-oriented, 7, 14, 82, 86, 94, 100, 108-109, 113,

125, 127-128, 134, 145, 152, 167, 203,
248-250, 278, 290, 354, 379, 424, 444, 446,

521
www.EBooksWorld.ir

466, 467-468, 472, 487, 512
Object-oriented design, 7, 14, 82, 86, 94, 108, 134,

278, 446, 466, 472
terms of, 7, 472

objects, 25-26, 29, 45, 48, 50-51, 59, 72, 100, 104,
106-108, 114, 116-117, 119-120, 130-131,
135, 145, 152, 154-156, 166, 173, 176,
177-179, 181, 187, 192, 195, 198, 200, 202,
207, 209, 211, 214, 217, 219, 236, 248-249,
270, 272, 274, 285-286, 290, 294-295,
298-299, 301, 303-304, 307, 315-316,
318-319, 327-328, 331, 338, 350, 353-354,
360, 366, 370-371, 376, 387, 396, 408, 417,
444, 453, 455, 461, 465, 472, 480, 484-487,
492, 500-502, 504

center of, 155, 360
direction of, 131, 480, 485, 502
grouping, 145
instantiate, 272, 319
LINUX, 236, 387
manager, 177
script, 444
state of, 417, 500, 502, 504
template, 106, 119-120, 166, 209, 350, 453, 455,

461, 484
visible, 173, 176

Observer pattern, 297, 310-311, 314-316, 359, 370
ODBC, 333, 345
Offsets, 369
OK button, 432
One-to-many relationship, 177, 295
One-to-one relationship, 295
OPEN, 15, 86, 93, 99-102, 104, 106, 108, 135, 199,

249, 256, 277, 316, 318, 433, 470, 482-483
opening, 453
Operating system, 157, 297, 381-382, 387, 391
operating systems, 391
Operations, 89, 114, 153, 165-166, 170, 172, 182,

459, 470, 472-473, 477, 479, 482-483, 493,
516

optimization, 402
OR function, 485
Orders, 52, 328-329, 339, 344, 356, 516
OUTPUT, 29, 44, 92-93, 117, 139, 358, 382, 449-451,

478, 495-496
output stream, 358
Overflow, 257, 492-493, 496
Overlap, 145, 456

P
<p>, 32
Packet, 433, 497-498, 505-506
packets, 433-434, 496-498

retransmission, 497
page, 25, 52, 95, 98, 104, 127, 173, 207, 233, 249,

269, 272, 276, 281, 294, 319, 350, 353-354,
357, 368, 370, 374, 376, 403, 417-418, 419,
424, 428, 433, 458, 468, 473, 476-477, 479,
481-483, 486, 494, 496, 498-503, 505,
509-510

pages, 5, 87, 379, 424, 476-478, 510
first, 5, 87, 510
last, 510
spreads, 87

pair programming, 13, 17, 44
paper, 5, 87, 91-93, 152, 203, 294, 315, 385, 444
paragraphs, 14, 431
Parameter, 132, 222, 299, 365, 369, 431, 466, 486
Parameters, 485
Parser, 205, 277
Partitioning, 82, 254-256, 284, 287, 290, 472, 482
Passing, 13, 47, 182, 273, 303, 311, 448, 480, 484,

486
Password, 432
Passwords, 179
Path, 8, 47, 105, 152, 294, 315, 324, 441, 512
paths, 28
Pattern, 16, 25, 94, 101, 107, 147, 151-155, 159,

163-164, 166-168, 170-172, 173-174,
178-180, 182, 186-187, 190, 192, 195,
198-199, 202, 205, 207, 209, 212, 219-220,
222, 224, 226-227, 229-230, 233, 237, 251,
268, 270-272, 274, 285, 293-295, 297-298,
300, 302, 304, 306, 308, 310-312, 314-316,
319, 323, 325, 329, 331, 337, 344-350, 353,
359, 361-362, 365, 370, 374, 376, 388, 391,
395-396, 402-403, 408-409, 418, 426-429,
431, 434, 441, 450, 454-456, 461, 465, 500

patterns, 1, 3, 7, 11, 19, 23, 31-32, 42, 43, 85, 87, 94,

95, 98, 99, 101, 111, 127, 134, 135, 145,
147, 151, 159, 161, 164, 172, 173, 176,
177-178, 182, 187, 189, 193, 199, 205, 213,
251, 253, 269, 274, 275, 291, 293, 297,
314-316, 317-318, 325, 327, 337, 353-354,
355, 379, 385, 387-388, 418, 419, 421-422,
441, 443, 454, 456, 466, 467, 487, 489, 506,
507, 512

test program, 182
Peers, 507, 509
Perfect, 21, 61, 159, 319, 325, 376, 443
performance, 22, 42, 281, 337, 344-345, 454, 490
Permanent storage, 248
Persistence, 98, 119-120, 248-249, 348, 368-369, 374,

376-378
Phase, 7, 357-358, 367, 382-383, 510-514
Phone numbers, 320, 322
Physical design, 483
Piggybacking, 496
pipelining, 496
planning, 6, 12, 15, 19-22, 70, 147, 254, 287, 357
Point, 3, 14, 20-22, 24, 48, 50, 52, 54, 59, 62, 76, 82,

92, 102, 112-113, 115-116, 121-124, 152,
155, 173, 176, 177, 182, 208, 217, 249, 255,
257, 267, 286, 294, 314, 317-318, 322, 337,
341, 348, 354, 371, 373, 379-381, 383, 447,
461-465, 469-471, 478-480, 484-485, 490,
497, 508, 510-512, 514, 516

pointer, 112, 115, 129, 136, 153, 170, 286
pointers, 48, 101, 106, 116, 143, 453
polygon, 447

area, 447
Polyline, 465
polymorphism, 101, 111, 113, 133-134, 182, 249, 486
Port, 489-490, 495
ports, 489-490
Position, 15, 17, 63, 81, 155, 261, 265, 317, 433, 457,

463-464, 478, 484, 497
Postconditions, 117
power, 187, 274, 282, 317, 382, 402, 458
Precedence, 128

higher, 128
Predicate, 474
Predicates, 103
preferences, 403-404
Prefixes, 174
Prepared statement, 174
Prime numbers, 32, 34, 39
Primitive, 114, 369
Printers, 489-490
Printing, 28-29
privacy, 281
private, 1, 35-41, 48, 50-51, 53, 57-58, 60-62, 65-70,

72-80, 108, 113, 115, 121-122, 130, 139,
142, 155-159, 163-172, 175-176, 179-181,
185, 187, 208, 210-211, 213, 215-216, 219,
223-224, 227, 231, 246, 257, 280-281, 294,
300-307, 309, 311-314, 328-330, 333-334,
336-337, 339-341, 343-344, 349-352,
361-362, 365, 368, 373, 375, 390, 395,
397-401, 403, 405-406, 408-409, 413-416,
421, 423-424, 427, 430-431, 435-440, 451,
455, 479, 481, 500

multiple inheritance, 139, 309
transient, 373
volatile, 130, 395

Procedure, 94, 493, 503-504
Procedures, 202
Process, 1, 3-4, 6-8, 17, 19, 22, 24, 31, 43, 90-91, 94,

120, 141, 162, 203, 249, 257-258, 369, 432,
444, 463, 467, 478, 483, 496-499, 503,
509-510

interrupt, 496
states, 432, 498-499

Processes, 4, 7-8, 19, 43, 506
processing, 195, 341, 433, 458, 460-461, 490, 495,

503
Production, 7, 12-14, 25, 237, 249, 356, 379, 446
Productivity, 15, 447
program, 14, 17, 23-26, 28-29, 32, 34, 38-39, 42, 43,

59, 63, 78, 82-83, 87-88, 90-94, 99, 101,
103-104, 109, 114, 127, 129-130, 134, 137,
153, 157-159, 161-164, 172, 177, 182, 187,
192, 201, 235, 248, 275, 279, 286-287, 290,
299, 303-304, 316, 327, 329, 332, 337,
363-367, 418, 433, 441, 444-447, 453-454,
476-478, 481, 483, 486

rename, 34
Program files, 275, 481

Program structure, 90, 444
Programmer, 4, 13-14, 91, 112, 116, 119, 337, 388,

391, 420, 446, 505
Programming, 1, 4, 8-9, 11-17, 19, 21-22, 24, 27, 29,

43-44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100,
108, 134, 159, 167, 379, 467, 476, 491

object-oriented, 14, 82, 100, 108, 134, 167, 379,
467

scenario, 22
Programming language, 29, 100, 108, 379, 476
Programs, 23, 27, 91, 104, 111, 162, 290, 321, 392,

440, 444-445, 447-448, 456, 476-478, 481,
486-487

context of, 486
project management, 515
project risks, 257
Properties, 114, 448-449, 452, 473-474, 486, 491
Property, 111, 441, 457, 474, 486

Get, 486
Set, 486

Protocol, 490, 496-497, 500-501, 503, 505
protocols, 419, 495
prototyping, 20
Pseudocode, 67, 70, 493
Public interface, 151, 156, 168, 171, 180, 191,

271-272, 294, 300, 302, 306, 309, 312-313,
336, 340, 362, 370, 388-389, 393, 397-398,
404, 413-414, 416, 422

public methods, 426
publications, 94
Python, 281, 319

classes, 281

Q
Queries, 173, 182, 194, 249
Query, 28, 145, 249, 311, 329, 454-455
Queue, 497
quotation marks, 473

R
Race condition, 505-506
Race conditions, 505-506
Radio, 401
Range, 151, 262, 282, 497
Raw data, 17
READ, 24-25, 27-29, 31-32, 36, 38, 43, 78, 82, 87-88,

90-94, 119-120, 132-133, 147, 153, 179,
248, 259, 272, 304, 341, 347-348, 354,
357-363, 369, 371, 418, 420, 444, 453, 477,
509, 514

reading, 9, 17, 22, 29, 38, 42, 93, 109, 120, 134, 145,
159, 172, 176, 179, 187, 192, 274, 325, 348,
354, 359-361, 370, 372, 374, 378-379, 381,
417-418, 424, 441, 465-466, 506

Realism, 291
real-time systems, 159, 395
Receiver, 480, 498, 503, 505
Record, 44, 148-150, 153, 179, 194-198, 230-231,

248, 315, 370, 373, 472
recording, 249
Recovery, 447
refactoring, 14, 16-17, 31-42, 43, 51, 72, 85-86, 186,

237, 304, 354
Reference, 112, 114-115, 129, 143, 178-179, 273-274,

310, 373-374, 377, 402, 426, 428, 486
References, 116, 143, 470
Reflection, 71, 201
Register, 136-139, 315-316, 360-361, 365-366, 503
Registers, 138, 176, 315, 365, 370
Relation, 287, 504
Relational database, 194-195, 249, 328, 476, 481
Relational model, 329
Relationship, 88, 113, 116, 120, 161, 167, 177,

264-265, 282, 295, 318-319, 338, 345, 347,
370, 467, 470, 474, 476, 479-483, 486, 502

Relationships, 8, 17, 129, 198, 254-258, 262, 282,
290, 295, 338, 344, 347, 470, 476-477,
480-483, 485, 500-503, 509

release, 12-13, 15-16, 20-22, 87-88, 92, 106, 254,
256-259, 267, 277-279, 284, 357, 362,
367-368, 381-383, 509-511, 516

removing, 16, 82, 155, 305
reporting, 249, 396
REQUIRED, 88-89, 103-104, 117, 133, 202, 261, 285,

319, 364, 380-381, 383, 428, 447, 453, 457,
460, 472, 498, 513, 515

resetting, 380

522
www.EBooksWorld.ir

response time, 433
restarting, 495
Retransmission, 497, 505-506
retrieving, 373
Return type, 270, 479
Reviews, 91
rework, 85
Risk, 88, 94, 137, 358, 378, 381-382, 444, 508

monitoring, 358, 378
Robotics, 320-324
Role, 14, 152, 248, 360, 472
Roles, 13, 380, 469
Root, 32, 34, 37, 39-40, 177, 233, 378
Rotation, 391-392
Round, 512, 514
rows, 179, 342
Rule, 5, 14-15, 21, 72, 117, 259, 275, 345, 354, 424,

474, 480
Rules, 8, 15, 27, 43, 67, 72, 83, 98, 111, 128, 147,

255, 341, 345, 347-348, 353-354, 378
Runnable interface, 500
Run-time error, 272, 485
Run-time errors, 272
Runtime errors, 120

S
safety, 254, 271, 472
SAP, 264-265, 267, 278
Scenarios, 200, 353, 370-371, 434
Scene, 467, 477
Schedule, 5-6, 12, 22, 201-202, 206, 221, 225-226,

234, 242, 249, 254, 257, 279, 287, 445-447,
474-475, 483-485, 490, 511, 514-515

Scheduling, 201, 361
Schema, 194, 266, 338-339, 345, 347, 354
Screens, 359
Script, 28, 281, 444, 477
scripting, 13, 27
scripts, 444, 476-477, 512, 514, 516
scrolling, 447, 471
Scrum, 8, 19
searching, 217
Secondary use, 510
Security, 130, 135, 380
SELECT, 12-13, 15, 148, 174, 194, 201, 219, 228-229,

271, 334, 339, 344, 428, 449, 457-458,
468-469, 471

Selection, 21, 174, 357
Semantics, 472-473, 479
Sensors, 152-153, 294-295, 359-362, 364, 367-368,

370-371, 380-381
separation of concerns, 345, 362
Sequence, 44-45, 82, 265-267, 280-282, 284,

286-287, 290, 331, 358, 360, 452, 463, 468,
483-485, 495, 502, 504-506

Sequence numbers, 506
serial ports, 489-490
Serializable interface, 370
server, 14, 91, 100-101, 145, 179, 259, 317-320, 322,

324, 476, 502-503, 512, 514
Server class, 100, 145
servers, 128, 131
service interfaces, 128, 130, 134
services, 128, 208

utility, 128
sessions, 14, 193, 403, 474-475, 489, 512
Setup, 53, 80, 183, 305, 311, 332, 335, 379, 381, 390,

395, 400, 409, 423, 440
shapes, 17, 96, 102-103, 108, 155, 293, 418, 463
Shell, 281
Signature, 97
silence, 507
Simplicity, 8, 16, 24, 151, 159, 297, 315, 344
Singleton pattern, 178, 180, 182
Sliding window, 496
SMART, 218
Snapshots, 205
software, 1, 3-9, 11-15, 17, 19, 22, 23-25, 29, 31, 43,

85-86, 87-90, 92-94, 95, 98, 99, 105-106,
109, 111, 113, 116-117, 125, 127, 132, 135,
137, 147, 151-153, 159, 161, 173, 177, 189,
193, 203, 205, 208, 250, 251, 253-256,
260-261, 264, 269, 275, 277-278, 281, 290,
291, 293, 295, 297, 317, 321, 325, 327, 345,
355-359, 361-363, 365, 367, 369, 371, 373,
375, 377, 379, 382-383, 385, 387, 419-420,
443, 448, 467, 472-474, 476, 478, 481-482,
486-487, 489-491, 500, 507, 510, 516

issues with, 358

software and, 88, 208, 281
software developers, 86, 88, 90, 94
Software engineering, 86, 109, 203, 250, 291, 443,

487
Solution, 16, 25, 28, 102-104, 107, 116, 120-122,

130-131, 136, 138-139, 179-180, 186, 230,
257, 259, 287, 298, 318-321, 324-325, 347,
359, 363, 375, 395, 417, 426, 431, 444-445,
447, 453-454, 456-457, 508, 513, 515

Sorting, 106, 165, 170
sound, 15, 135, 182, 362, 378, 420
Source, 4-5, 14, 16, 28, 87, 89, 91, 94, 100, 103-104,

120, 131, 134, 159, 248, 257, 261, 263-264,
275, 280-281, 284, 289-290, 298-300,
302-308, 310-312, 314, 319, 357, 381, 402,
408, 420, 445, 478, 483, 499-501, 503

source code, 87, 91, 94, 100, 103, 120, 261, 263-264,
275, 290, 319, 357, 402, 445, 483, 501

Source file, 263, 408
Source files, 257, 275, 281, 290
Spaces, 453-454, 456
Specifications, 291, 469, 473-474, 478
Spectre, 88, 145, 344, 403
Speed, 8, 119, 134, 345, 355, 357, 359, 371, 379-381,

383, 391, 425, 490
Spiral, 8
Spoofing, 273-274
spreads, 87, 513
SQL, 173-174, 329, 333, 341, 345
square root, 32, 34, 37, 39
Stack, 155, 158
stakeholders, 7, 12, 22, 106, 370, 472, 474
Standard deviation, 267
standards, 8
State, 4, 6, 12-13, 15, 24, 92, 114, 123, 127, 153-154,

182-184, 186, 311, 317, 321-324, 374, 385,
417, 419-441, 443, 458-465, 492-496,
498-502, 504-506, 511

Statement, 4-5, 7, 37, 51, 77, 103, 112, 122, 128, 174,
179-180, 329, 339, 422, 424, 426

States, 117, 184, 254-256, 359, 385, 419-421, 424,
426, 429, 432-433, 435, 439, 443, 459,
492-494, 498-500, 511-512

exit, 459, 493-494
finish, 512
spawn, 498, 512
transition, 419-420, 424, 426, 429, 433, 435, 459,

493-494, 498-500
waiting, 433

Statistics, 285, 396
Steps, 7, 50, 70, 72, 76, 83, 205, 297, 314-315, 503
Stick diagrams, 509
storing, 194, 370, 373, 465
story cards, 508-509
Streaming, 358, 382
String, 33-34, 41, 45-46, 49, 53, 80, 97, 107, 130, 156,

158-159, 162-164, 169, 175, 178, 180-181,
183, 191, 209-211, 215, 223-224, 236,
245-247, 266, 269, 271-272, 299, 303, 305,
311, 316, 329-330, 332-340, 342, 349-353,
363-366, 368, 370-373, 388-390, 393-395,
397-400, 404-409, 411-414, 416-417, 422,
437-440, 450-451, 474, 478-479, 483,
486-487

String class, 236
strings, 129, 159, 329, 345, 371, 408, 453, 479
Stroustrup, Bjarne, 43
struct, 102, 112, 491, 496
Structure, 5-7, 16, 23-29, 31, 34, 42, 67, 85, 87, 90,

92, 94, 101, 105, 112, 118, 120, 127-129,
132, 134, 148-150, 152, 162-163, 166, 170,
173, 176, 179-180, 182, 186, 190, 195-200,
203, 206-207, 214, 220, 222-223, 233, 240,
251, 253-257, 259-261, 263, 272-274,
275-276, 278-279, 281, 287, 289-290,
293-294, 297, 314-316, 323-325, 327, 338,
354, 358, 361-363, 365, 367, 370-371,
376-377, 388, 391, 396, 402, 404, 407-408,
418, 426, 431-432, 444, 446, 448, 450,
453-454, 456-457, 466, 470, 472-474, 491,
495, 500

decision, 24, 120, 198, 404, 444, 456
Stubs, 25
Subclass, 122-123, 161, 179, 308, 318
submit, 148, 194, 468
Subprograms, 90
Subroutine, 28, 128
Subtype, 111, 125
Subwindows, 432

Sum, 55
Support, 7, 16, 85, 117, 123, 254, 275, 278-279, 347,

381, 383, 425, 431, 437, 476, 489, 510, 513,
516

switch statement, 103
syntax, 429, 479, 504, 510, 514
system configuration, 391

T
tables, 15, 179, 194, 328, 424-425, 434
Tablet, 139
Tag, 478-479
Tapes, 91
Task, 14-15, 21-22, 27, 83, 90, 215, 258-260, 322,

457-459, 462-465, 512-515
Task planning, 21
Technology, 1, 6, 14, 17, 108, 113, 134, 249, 446, 516
Temperature, 132, 355, 357-364, 370-371, 373-374,

376, 379-383
Testing, 13-14, 23-24, 26-29, 45, 106, 117, 120, 147,

249, 257, 259, 274, 298, 362, 367, 385, 424,
443, 445, 453

automated, 385
solutions, 257
unit, 14, 23, 26-27, 29, 117, 259, 274, 424

Tests, 6, 8, 13-14, 16, 23-29, 32-34, 36-39, 48, 50, 55,
72, 75-77, 80, 83, 90, 98, 106, 112, 116-117,
193-194, 207, 238, 249, 272-273, 299, 344,
358, 498, 512

text, 17, 27-29, 89, 153, 174, 176, 205, 248, 277,
453-454, 462, 470, 477, 498, 512

Text file, 28, 153, 248, 453-454, 477
Text files, 27
this object, 174, 248, 297, 360, 460
Thrashing, 107, 347, 359, 509, 512-513, 515
Threads, 155, 158, 496, 499-500, 506
Threats, 22
Threshold, 267
Throughput, 490

average, 490
Throw an exception, 48, 190, 215
throws Exception, 156-159, 162-163, 169, 178, 190,

272, 332-339, 343, 440-441
Time, 5-8, 12-14, 17, 20-21, 27, 37, 42, 46-47, 55-56,

62, 72, 85, 87, 89-92, 96, 101, 105, 107-108,
112-113, 123, 130, 136-139, 147-149, 152,
157-159, 164, 170, 178, 189-190, 192, 194,
196, 200, 205-206, 214-215, 217, 219, 233,
235, 237-242, 248, 254-258, 261, 267, 269,
271-272, 277, 279, 285, 287, 291, 297-299,
303, 306, 308, 310-311, 315, 319, 323, 325,
336, 339, 345, 354, 355-360, 366, 370-376,
378-383, 387, 392, 395, 404, 425, 427,
432-433, 445, 447-448, 456-458, 461,
463-464, 466, 469, 474, 478, 483-486,
489-491, 495-498, 500-501, 504-506,
508-516

Timeout, 136-139, 497-498, 501, 503, 505-506
Timing, 136-137, 395, 447, 496-498, 506

diagrams, 496, 498, 506
Tokens, 485
toner, 91
Toolbar, 155
tools, 4-5, 27, 202, 274, 281, 285, 347, 362, 382, 420,

434, 476, 498, 514
Arrow, 420, 476
Line, 4-5, 514
Rectangle, 434

Top-down design, 72, 260
Tracing, 460-461
Track, 6, 44, 75, 95, 177, 254, 279, 355, 359, 468
Traffic, 17
Transaction, 28-29, 140-143, 148-150, 153-154,

195-200, 205-207, 209-210, 212-214,
216-225, 228-229, 233-234, 236, 248,
276-281, 283-289, 329

transferring, 5
Transmission, 433, 496

interference, 496
transparency, 182
Traps, 111, 274
Trigger, 358, 498
trust, 7, 24, 70, 446, 511, 513
Tuning, 450

U
UML diagrams, 15, 87, 148, 193, 203, 230, 242, 379,

510

523
www.EBooksWorld.ir

UNDER, 26, 88, 220, 385, 443-444, 490
Underflow, 492, 496
UNIQUE, 137, 140, 339, 447, 491
Unit tests, 14, 16, 26-27, 29, 90, 116-117, 193,

272-273, 358
United States, 385, 443
UNIX, 51-52, 387-388, 391, 396
UNKNOWN, 149, 196, 503
Update, 154, 299-312, 314-316, 359-361, 371, 463,

498
upgrades, 356

hardware drivers, 356
USAGE, 106, 173, 179, 379
Use case, 148-150, 194-201, 220, 380-381, 383,

469-471, 475-477, 483, 487, 510
use cases, 148, 194-195, 197, 199, 201, 235, 248,

357, 380, 382-383, 469-472, 475-476, 482,
486-487, 509-510, 512

User, 12-13, 20, 22, 27, 32, 34, 39, 44, 96, 106, 117,
122, 124, 130-131, 137, 139-141, 143,
153-155, 174, 179-180, 182, 193-195,
201-203, 235, 241, 286, 355, 358-359,
379-382, 396, 403-404, 432-433, 444,
457-459, 462-464, 468-469, 471-472, 477,
486, 490, 508-510, 515

User interface, 27, 96, 139, 141, 143, 359, 382, 444,
469, 471

user stories, 12-13, 20, 22, 44, 193-195, 201, 203,
235, 241

users, 8, 12, 16, 20, 28, 91, 105-106, 113, 115-117,
122-124, 137-138, 143, 153, 155, 173, 176,
179, 182, 187, 194, 201, 271-272, 287, 321,
323-324, 341, 380, 403, 433, 445, 468-469,
471-473, 477

using namespace std, 107

V
Validation, 153-154
Value, 4, 8, 20, 22, 31-32, 34, 117, 181, 192, 193, 237,

265, 267, 279, 282, 315-316, 359-360, 371,
373-374, 381, 408, 424, 441, 474, 486, 504,
507, 509

initial, 20, 371, 373
Values, 4, 6, 8, 52, 226, 316, 329, 333, 339, 343, 358,

361, 370-371, 373-374, 376, 379-381, 448,
485-486, 504

Variable, 36, 56-57, 66-67, 71-72, 75, 103, 121, 129,
155, 178-181, 187, 190-191, 213, 273-274,
359, 373, 377-378, 403, 424, 470, 493, 497,
504

variables, 17, 32, 34, 37, 39, 65, 68, 114, 143, 152,
181-182, 187, 190, 213, 258, 297, 339, 368,
373-374, 377-379, 424, 427, 437, 473, 480,
485, 493, 496, 498, 500

values of, 374
Variance, 267
Vector, 104, 106-107, 294-295, 306-307, 309, 312,

328-329, 338, 340, 434-435, 451-452
View, 1, 7, 24, 82, 98, 112-113, 116-117, 130, 173,

195, 254-256, 287, 380, 382-383, 454,
468-471, 506

View menu, 469-471
virtual machine, 381, 383
volume, 7, 403-405, 407, 425, 433

W
Web, 14, 82, 179, 250, 321, 327, 476-478, 509
Web page, 476
Web pages, 476-478
Web server, 179, 476
WELL, The, 64
what is, 87-88, 90, 92, 94, 97, 111, 131, 195, 242, 257,

298, 331, 486
While-loop, 92
Windows, 236, 258-260, 387, 444, 446, 453-454
WITH, 3-8, 11-17, 19-22, 24-29, 31-32, 36-37, 39, 42,

43-45, 48, 50-52, 55, 57, 59, 62-63, 68-69,
71-72, 82-84, 85, 87-91, 93-94, 96-97, 100,
103-106, 113-118, 120, 122-124, 127-128,
132, 135-138, 140, 143, 145, 147-150,
151-155, 158-159, 161, 164-165, 171, 176,
178, 181, 186, 193-199, 201-202, 206-208,
213, 217-219, 225, 230, 233, 235-237, 239,
243, 248-249, 253-261, 263, 265, 267,
271-272, 275-276, 278-279, 281-284, 287,
290, 291, 299, 306, 308, 310-311, 314-315,
317, 319-325, 328-329, 331-332, 335,
340-341, 345, 347-348, 353-354, 355-371,

373-374, 377-378, 380-383, 387, 391-392,
396, 402-404, 406, 408, 417-418, 420, 422,
424-426, 428-429, 433-434, 444-449,
453-454, 456-459, 461-466, 469-474,
476-487, 491, 493-500, 502-504, 507-516

Words, 12, 45, 100, 113, 117, 133, 135, 321, 348,
378-379, 498

reserved, 135
Workstation, 13, 15, 358
Worlds, 161
wrapping, 144
WRITE, 5, 12-14, 20, 24-25, 27-28, 39, 42, 44-48, 53,

59, 62, 89-90, 105-107, 112, 130, 144, 162,
179, 212, 215, 238, 248-249, 254, 278, 281,
298, 319, 335, 339-340, 347-348, 350-354,
358, 362-363, 374, 376, 396, 408, 429-431,
447, 454, 462, 465, 476, 486, 512-513, 515

writing, 7-8, 13-14, 23-29, 37, 51, 53, 59, 82-83, 92,
106, 117, 120, 153, 179, 205, 207, 219, 229,
272-273, 315, 327, 336, 348, 350, 354, 356,
429, 432, 509

X
XML, 28-29, 348, 350-351, 408, 410-411, 413-414,

416-417, 441, 477
XSLT, 477

Y
y-axis, 122
Yield, 499

Z
Zero, 91, 237, 263, 265, 267, 475, 493, 515
Zone, 266, 379, 381-382, 422
Zoom, 388-389, 392, 456

524
www.EBooksWorld.ir

	Cover

	Table of Contents
	Section 1. Agile Development
	Chapter 1. Agile Practices
	Chapter 2. Overview of Extreme Programming
	Chapter 3. Planning
	Chapter 4. Testing
	Chapter 5. Refactoring
	Chapter 6. A Programming Episode
	Section 2. Agile Design
	Chapter 7. What Is Agile Design?
	Chapter 8. SRP: The Single-Responsibility Principle
	Chapter 9. OCP: The Open-Closed Principle
	Chapter 10. LSP: The Liskov Substitution Principle
	Chapter 11. DIP: The Dependency-Inversion Principle
	Chapter 12. ISP: The Interface-Segregation Principle
	Section 3. The Payroll Case Study
	Chapter 13. Command and Active Object
	Chapter 14. Template Method & Strategy: Inheritance vs. Delegation
	Chapter 15. Facade and Mediator
	Chapter 16. Singleton and Monostate
	Chapter 17. Null Object
	Chapter 18. The Payroll Case Study: Iteration One Begins
	Chapter 19. The Payroll Case Study: Implementation
	Section 4. Packaging the Payroll System
	Chapter 20. Principles of Package Design
	Chapter 21. Factory
	Chapter 22. The Payroll Case Study (Part 2)
	Section 5. The Weather Station Case Study
	Chapter 23. Composite
	Chapter 24. Observer—Backing into a Pattern
	Chapter 25. Abstract Server, Adapter, and Bridge
	Chapter 26. Proxy and Stairway to Heaven: Managing Third Party APIs
	Chapter 27. Case Study: Weather Station
	Section 6. The ETS Case Study
	Chapter 28. Visitor
	Chapter 29. State
	Chapter 30. The ETS Framework
	Appendix A: UML Notation I: The CGI Example
	Appendix B: UML Notation II: The Statmux
	Appendix C: A Satire of Two Companies
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	
L
	M
	N

	
O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	
Z

